We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

1.
K. T.
Kamtekar
,
A. P.
Monkman
, and
M. R.
Bryce
,
Adv. Mater.
22
,
572
(
2010
).
2.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
,
Nature
459
,
234
(
2009
).
3.
G.
He
,
C.
Rothe
,
S.
Murano
,
A.
Werner
,
O.
Zeika
, and
J.
Birnstock
,
J. Soc. Inf. Disp.
17
,
159
(
2009
).
4.
T. C.
Rosenow
,
M.
Furno
,
S.
Reineke
,
S.
Olthof
,
B.
Lüssem
, and
K.
Leo
,
J. Appl. Phys.
108
,
113113
(
2010
).
5.
P. Y.
Ngai
,
Proc. SPIE
7617
,
761714
(
2010
).
6.
S.
Nowy
,
B. C.
Krummacher
,
J.
Frischeisen
,
N. A.
Reinke
, and
W.
Brütting
,
J. Appl. Phys.
104
,
123109
(
2008
).
7.
M.
Flämmich
,
M. C.
Gather
,
N.
Danz
,
D.
Michaelis
, and
K.
Meerholz
,
Appl. Phys. Lett.
95
,
263306
(
2009
).
8.
R.
Meerheim
,
M.
Furno
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
,
Appl. Phys. Lett.
97
,
253305
(
2010
).
9.
S.
Mladenovski
,
S.
Hofmann
,
S.
Reineke
,
L.
Penninck
,
T.
Verschueren
, and
K.
Neyts
,
J. Appl. Phys.
109
,
083114
(
2011
).
10.
M.
Furno
,
R.
Meerheim
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
,
Phys. Rev. B
85
,
115205
(
2012
).
11.
P.
Freitag
,
S.
Reineke
,
S.
Olthof
,
M.
Furno
,
B.
Lüssem
, and
K.
Leo
,
Org. Electron.
11
,
1676
(
2010
).
12.
C.
Weichsel
,
S.
Reineke
,
M.
Furno
,
B.
Lüssem
, and
K.
Leo
,
J. Appl. Phys.
111
,
033102
(
2012
).
13.
M.
Schober
,
S.
Olthof
,
M.
Furno
,
B.
Lüssem
, and
K.
Leo
,
Appl. Phys. Lett.
97
,
013303
(
2010
).
14.
M.
Schober
,
M.
Anderson
,
M.
Thomschke
,
J.
Widmer
,
M.
Furno
,
R.
Scholz
,
B.
Lüssem
, and
K.
Leo
,
Phys. Rev. B
84
,
165326
(
2011
).
15.
Self-consistency of the model requires λsel(λ)dλ=1.
16.
17.
G. W.
Ford
and
W. H.
Weber
,
Phys. Rep.
113
,
195
(
1984
).
18.
K. A.
Neyts
,
J. Opt. Soc. Am. A
15
,
962
(
1998
).
19.

According to standard electromagnetic modeling, the spectral power F(λ) is a dimensionless quantity, normalized with respect to the power radiated by the same emitter in free space (Refs. 10 and 16–18). The same normalization applies for the outcoupled power fraction U(λ).

20.
M.
Carvelli
,
R. A. J.
Janssen
, and
R.
Coehoorn
,
Phys. Rev. B
83
,
075203
(
2011
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4757610 for the detailed presentation of calculations results for device D1.
22.
G.
Schwartz
,
S.
Reineke
,
K.
Walzer
, and
K.
Leo
,
Appl. Phys. Lett.
92
,
053311
(
2008
).
23.
S.
Mladenovski
,
K.
Neyts
,
D.
Pavicic
,
A.
Werner
, and
C.
Rothe
,
Opt. Express
17
,
7562
(
2009
).
24.
C. C.
Katsidis
and
D. I.
Siapkas
,
Appl. Opt.
41
,
3978
(
2002
).
25.
M.
Furno
,
R.
Meerheim
,
M.
Thomschke
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
,
Proc. SPIE
7617
,
761716
(
2010
).
26.
The efficiency loss is calculated according to the formula ηint(wbηwg,b+wGYηspp,GY+iwiηabs,i).

Supplementary Material

You do not currently have access to this content.