Ferroelectric domain switching in c-axis-oriented epitaxial Pb(Zr0.2Ti0.8)O3 thin films was studied using different field geometries and compared to numerical simulations and theoretical predictions. With carbon nanotubes as electrodes, continuous nanodomains as small as 9 nm in radius in a 270 nm thick film could be switched, remaining stable for over 20 months. Defect pinning of domain walls appears to play a key role in stabilizing such domains, below the predicted thermodynamic size limit.

1.
J. F.
Scott
and
C. A. P.
de Araujo
,
Science
246
,
1400
(
1989
).
2.
A. K. S.
Kumar
,
P.
Paruch
,
J.-M.
Triscone
,
W.
Daniau
,
S.
Ballandras
,
L.
Pellegrino
,
D.
Marré
, and
T.
Tybell
,
Appl. Phys. Lett.
85
,
1757
(
2004
).
3.
T.
Hidaka
,
T.
Maruyama
,
I.
Sakai
,
M.
Saitoh
,
L. A.
Wills
,
R.
Hiskes
,
S. A.
Dicarolis
,
J.
Amano
, and
C. M.
Foster
,
Integr. Ferroelectr.
17
,
319
(
1997
).
4.
T.
Maruyama
,
M.
Saitoh
,
I.
Sakai
,
T.
Hidaka
,
Y.
Yano
, and
T.
Noguchi
,
Appl. Phys. Lett.
73
,
3524
(
1998
).
5.
T.
Tybell
,
P.
Paruch
,
T.
Giamarchi
, and
J.-M.
Triscone
,
Phys. Rev. Lett.
89
,
097601
(
2002
).
6.
Y.
Cho
,
K.
Fujimoto
,
Y.
Hiranaga
,
Y.
Wagatsuma
,
A.
Onoe
,
K.
Terabe
, and
K.
Kitamura
,
Appl. Phys. Lett.
81
,
4401
(
2002
).
7.
P.
Paruch
,
T.
Tybell
, and
J.-M.
Triscone
, in
Proceedings of the 10th International Ceramic Congress, CIMTEC, Part D
(
2002
), p.
675
.
8.
N.
Tayebi
,
Y.
Narui
,
R. J.
Chen
,
C. P.
Collier
,
K. P.
Giapis
, and
Y.
Zhang
,
Appl. Phys. Lett.
93
,
103112
(
2008
).
9.
N.
Tayebi
,
Y.
Narui
,
N.
Franklin
,
C. P.
Collier
,
K. P.
Giapis
,
Y.
Nishi
, and
Y.
Zhang
,
Appl. Phys. Lett.
96
,
023103
(
2010
).
10.
P.
Paruch
,
A. B.
Kolton
,
X.
Hong
,
C. H.
Ahn
, and
T.
Giamarchi
,
Phys. Rev. B
85
,
214115
(
2012
).
11.
A. N.
Morozovska
and
E. A.
Eliseev
,
Phys. Rev. B
73
,
104440
(
2006
).
12.
A. N.
Morozovska
,
E. A.
Eliseev
,
Y.
Li
,
S. V.
Svechnikov
,
P.
Maksymovych
,
V. Y.
Shur
,
V.
Gopalan
,
L.-Q.
Chen
, and
S. V.
Kalinin
,
Phys. Rev. B
80
,
214110
(
2009
).
13.
S.
Gariglio
,
N.
Stucki
,
J.-M.
Triscone
, and
G.
Triscone
,
Appl. Phys. Lett.
90
,
202905
(
2007
).
14.
CNTs from SES Research were suspended in deionized H2O with sodium dodecylbenzenesulfonate surfactant,29 then dispersed by spin-coating (one 20 μl drop, 3 min wait, 4000 rps for 30 s, 3 repeats).
15.
Switching pulses to the electrodes/CNT were applied via ZN50R-10-BeCu needle probes (Lake Shore CPX probe station, Agilent 81110A pulse generator). Switching pulses to the Bruker MESP tips were applied directly on the Veeco Dimension V AFM. For PFM imaging, typical parameters were 20 kHz drive frequency, 3000 mV drive amplitude, and 3 μm/s tip velocity.
16.
P.
Paruch
,
A.-B.
Posadas
,
M.
Dawber
,
C. H.
Ahn
, and
P. L.
McEuen
,
Appl. Phys. Lett.
93
,
132901
(
2008
).
17.
P.
Maksymovych
,
M.
Pan
,
P.
Yu
,
R.
Ramesh
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Nanotechnology
22
,
254031
(
2011
).
18.
For the AFM-written domains, the radius was extracted from the total domain area obtained from the binarized PFM phase image. For the CNT and electrode-edge-written domains, the average half-width/width was extracted from a linear portion of the domain.
19.

In all three cases, we used a 2D model where the film is modeled by a 270 nm thick and 10 μm long rectangle with a relative dielectric permittivity of 80 (measured on the device). The AFM tip was modeled with a 10μm high 21° half angle cone terminated by a 50 nm radius disc, the top electrode with a rectangle of 55 nm by 5 μm and the CNT with a 1 nm radius disc. The shape and the size of the water meniscus were adapted from Weeks et al.30 and modeled by a Bézier polygon with the same contact angle on the field source and the film.

20.
S. V.
Kalinin
and
D. A.
Bonnell
,
Phys. Rev. B
65
,
125408
(
2002
).
21.
R.
Landauer
,
J. Appl. Phys.
28
,
227
(
1957
).
22.
B.
Wang
and
C. H.
Woo
,
J. Appl. Phys.
94
,
610
(
2003
).
23.
S. V.
Kalinin
,
S.
Jesse
,
A.
Tselev
,
A. P.
Baddorf
, and
N.
Balke
,
ACS Nano
5
,
5683
(
2011
).
24.
P.
Gao
,
C. T.
Nelson
,
J. R.
Jokisaari
,
S.-H.
Baek
,
C. W.
Bark
,
Y.
Zhang
,
E.
Wang
,
D. G.
Schlom
,
C.-B.
Eom
, and
X.
Pan
,
Nature Commun.
2
,
591
(
2011
).
25.
P.
Maksymovych
,
A. N.
Morozovska
,
P.
Yu
,
E. A.
Eliseev
,
Y.-H.
Chu
,
R.
Ramesh
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Nano Lett.
12
,
209
(
2012
).
26.
J.
Guyonnet
,
I.
Gaponenko
,
S.
Gariglio
, and
P.
Paruch
,
Adv. Mater.
23
,
5377
(
2011
).
27.
S.
Jesse
,
B. J.
Rodriguez
,
S.
Choudhury
,
A. P.
Baddorf
,
I.
Vrejoiu
,
D.
Hesse
,
M.
Alexe
,
E. A.
Eliseev
,
A. N.
Morozovska
,
J.
Zhang
,
L.-Q.
Chen
, and
S. V.
Kalinin
,
Nature Mater.
7
,
209
(
2008
).
28.
P.
Paruch
,
T.
Giamarchi
, and
J.-M.
Triscone
,
Phys. Rev. Lett.
94
,
197601
(
2005
).
29.
M. F.
Islam
,
E.
Rojas
,
D. M.
Bergey
,
A. T.
Johnson
, and
A. G.
Yodh
,
Nano Lett.
3
,
269
(
2003
).
30.
B. L.
Weeks
,
M. W.
Vaughn
, and
J. J.
DeYoreo
,
Langmuir
21
,
8096
(
2005
).
You do not currently have access to this content.