Many ferroelastic crystals display at sufficiently low measurement frequencies a huge elastic softening below Tc which is caused by domain wall motion. Materials range from perovskites to iron based superconductors and shape memory materials. We present a model—based on Landau-Ginzburg theory including long range elastic interaction between needle shaped ferroelastic domains—to describe the observed superelastic softening. The theory predicts that the domain wall contribution to the elastic susceptibility is different for improper and proper ferroelastic materials. A test of the theory against experimental data on SrTiO3, KMnF3, LaAlO3, LaAlO3,La1-xNdxP5O14, and NH4HC2O4·12H2O yields excellent agreement.

1.
J.
Hlinka
,
P.
Ondrejkovic
, and
P.
Marton
,
Nanotechnology
20
,
105709
(
2009
).
2.
Z.
Kutnjak
,
R.
Blinc
, and
J.
Petzelt
,
Nature (London)
441
,
956
(
2006
).
3.
R. E.
Cohen
,
Nature (London)
441
,
941
(
2006
).
4.
5.
E.
Salje
and
H.
Zhang
,
Phase Transitions
82
,
452
(
2009
).
6.
E. K. H.
Salje
,
Phase Transitions in Ferroelastic and Coelastic Crystals
(
Cambridge University Press
,
1993
).
7.
A. K.
Tagantsev
,
L. E.
Cross
, and
J.
Fousek
,
Domains in Ferroic Crystals and Thin Films
(
Springer
,
2010
).
8.
W.
Schranz
,
P.
Sondergeld
,
A. V.
Kityk
, and
E. K. H.
Salje
,
Phys. Rev. B
80
,
094110
(
2009
).
9.
A. V.
Kityk
,
W.
Schranz
,
P.
Sondergeld
,
D.
Havlik
,
E. K. H.
Salje
, and
J. F.
Scott
,
Phys. Rev. B
61
,
946
(
2000
).
10.
Z.
Zhang
,
J.
Koppensteiner
,
W.
Schranz
,
J. B.
Betts
,
A.
Migliori
, and
M. A.
Carpenter
,
Phys. Rev. B
82
,
014113
(
2010
).
11.
12.
A. L.
Roytburd
,
J. Appl. Phys.
83
,
228
(
1998
);
A. L.
Roytburd
,
J. Appl. Phys.
83
,
239
(
1998
).
13.
S.
Pamir Alpay
and
A. L.
Roytburd
,
J. Appl. Phys.
83
,
4714
(
1998
).
14.
J.
Torrés
,
C.
Roucau
, and
R.
Ayroles
,
Phys. Status Solidi A
70
,
193
(
1982
).
15.
W.
Schranz
,
Phys. Rev. B
83
,
094120
(
2011
).
16.
W.
Schranz
,
H.
Kabelka
, and
A.
Trster
,
Ferroelectrics
426
,
242
(
2012
).
17.
X. R.
Huang
,
S. S.
Jiang
,
X. B.
Hu
,
X. Y.
Wu
,
W.
Zeng
,
D.
Feng
, and
J. Y.
Wang
,
Phys. Rev. B
52
,
9932
(
1995
).
18.
J. L.
Godet
,
M.
Krauzman
,
J. P.
Mathieu
,
H.
Poulet
, and
N.
Toupry
,
J. Phys.
48
(
5
),
809
(
1987
).
19.
W.
Schranz
,
Phase Transitions
64
,
103
(
1997
).
20.
A. S.
Sonin
and
B. A.
Strukov
,
Introduction to Ferroelectricity
(
Moscow
,
1970
) [in Russian].
21.
A. S.
Sidorkin
,
J. Appl. Phys.
83
,
3762
(
1998
).
22.
J.
Chrosch
and
E. K. H.
Salje
,
J. Appl. Phys.
85
,
722
(
1999
).
23.
J.
Lajzerowicz
,
Ferroelectrics
35
,
219
(
1981
).
24.
R.
Harrison
and
S. A. T.
Redfern
,
Phys. Earth Planet. Inter.
134
,
253
(
2002
).
25.
E. K. H.
Salje
,
M. C.
Gallardo
,
J.
Jiménez
,
F. J.
Romero
, and
J.
del Cerro
,
J. Phys.: Condens. Matter
10
,
5535
(
1998
).
26.
S. A.
Hayward
,
F. J.
Romero
,
M. C.
Gallardo
,
J.
del Cerro
,
A.
Gibaud
, and
E. K. H.
Salje
,
J. Phys.: Condens. Matter
12
,
1133
(
2000
).
27.
R. J.
Harrison
,
S. A. T.
Redfern
, and
U.
Bismayer
,
Miner. Mag.
68
,
839
(
2004
).
28.
Y.
Wang
,
W.
Sun
,
X.
Chen
,
H.
Shen
, and
B.
Lu
,
Phys. Status Solidi A
102
,
279
(
1987
).
29.
H. J.
Keller
,
D.
Kucharczyk
, and
H.
Küppers
,
Z. Kristallogr.
158
,
221
(
1982
).
30.
J. P.
Benoit
,
J.
Berger
,
M.
Krauzman
, and
J. L.
Godet
,
J. Phys.
47
,
815
(
1986
).
31.
X.
Ren
,
Y.
Wang
,
Y.
Zhou
,
Z.
Zhang
,
D.
Wang
,
G.
Fan
,
K.
Otsuka
,
T.
Suzuki
,
Y.
Ji
,
J.
Zhang
,
Y.
Tian
,
S.
Hou
, and
X.
Ding
,
Philos. Mag.
90
,
141
(
2010
).
You do not currently have access to this content.