It is experimentally shown that barium titanate glass microspheres with diameters (D) in the range 2–220 μm and with high refractive index (n ∼ 1.9–2.1) can be used for super-resolution imaging of liquid-immersed nanostructures. Using micron-scale microspheres, we demonstrate an ability to discern the shape of a pattern with a minimum feature size of ∼λ/7, where λ is the illumination wavelength. For spheres with D > 50 μm, the discernible feature sizes were found to increase to ∼λ/4. Detailed data on the resolution, magnification, and field-of-view are presented. This imaging technique can be used in biomedical microscopy, microfluidics, and nanophotonics applications.

1.
B. D.
Terris
,
H. J.
Manin
,
D.
Ruger
,
W. R.
Studenmund
, and
G. S.
Kino
,
Appl. Phys. Lett.
65
,
388
(
1994
).
2.
B.
Hecht
,
B.
Sick
,
U. P.
Wild
,
V.
Deckert
,
R.
Zenobi
,
O. J. F.
Martin
, and
D. W.
Pohl
,
J. Chem. Phys.
112
,
7761
(
2000
).
4.
5.
I. I.
Smolyaninov
,
Y. J.
Hung
, and
C. C.
Davis
,
Science
315
,
1699
(
2007
).
6.
Z.
Jacob
,
L. V.
Alekseyev
, and
E.
Narimanov
,
Opt. Express
14
,
8247
(
2006
).
7.
Z.
Liu
,
H.
Lee
,
Y.
Xiong
,
C.
Sun
, and
X.
Zhang
,
Science
315
,
1686
(
2007
).
8.
J. Y.
Lee
,
B. H.
Hong
,
W. Y.
Kim
,
S. K.
Min
,
Y.
Kim
,
M. V.
Jouravlev
,
R.
Bose
,
K. S.
Kim
,
I.-C.
Hwang
,
L. J.
Kaufman
,
C. W.
Wong
,
P.
Kim
, and
K. S.
Kim
,
Nature
460
,
498
(
2009
).
9.
V. N.
Smolyaninova
,
I. I.
Smolyaninov
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Opt. Lett.
35
,
3396
(
2010
).
10.
Z.
Wang
,
W.
Guo
,
L.
Li
,
B.
Luk'yanchuk
,
A.
Khan
,
Z.
Liu
,
Z.
Chen
, and
M.
Hong
,
Nat. Commun.
2
,
218
(
2011
).
11.
X.
Hao
,
C.
Kuang
,
X.
Liu
,
H.
Zhang
, and
Y.
Li
,
Appl. Phys. Lett.
99
,
203102
(
2011
).
12.
Z. G.
Chen
,
A.
Taflove
, and
V.
Backman
,
Opt. Express
12
,
1214
(
2004
);
[PubMed]
S.
Yang
,
A.
Taflove
, and
V.
Backman
,
Opt. Express
19
,
7084
(
2011
).
[PubMed]
13.
P.
Ferrand
,
J.
Wenger
,
A.
Devilez
,
M.
Pianta
,
B.
Stout
,
N.
Bonod
,
E.
Popov
, and
H.
Rigneault
,
Opt. Express
16
,
6930
(
2008
);
[PubMed]
A.
Devilez
,
N.
Bonod
,
J.
Wenger
,
D.
Gérard
,
B.
Stout
,
H.
Rigneault
, and
E.
Popov
,
Opt. Express
17
,
2089
(
2009
).
[PubMed]
14.
A. M.
Kapitonov
and
V. N.
Astratov
,
Opt. Lett.
32
,
409
(
2007
).
15.
S.
Yang
and
V. N.
Astratov
,
Appl. Phys. Lett.
92
,
261111
(
2008
).
16.
For a review, see
A.
Heifetz
,
S. C.
Kong
,
A. V.
Sahakian
,
A.
Taflove
, and
V.
Backman
,
J. Comput. Theor. Nanosci.
6
,
1979
(
2009
).
17.
For a review, see
V. N.
Astratov
,
Photonic Microresonator Research and Applications
, Springer Series in Optical Sciences Vol. 156, edited by
I.
Chremmos
,
O.
Schwelb
, and
N.
Uzunoglu
(
Springer
,
New York
,
2010
), pp.
423
457
.
18.
A.
Darafsheh
,
M. A.
Fiddy
, and
V. N.
Astratov
, in
IEEE Proceedings of the 14th International Conference on Transparent Optical Networks–ICTON’12, Coventry, England, 2-5 July 2012
(IEEE,
2012
), Paper No. Tu.A6.5, DOI: .
19.
O.
Svitelskiy
,
Y.
Li
,
A.
Darafsheh
,
M.
Sumetsky
,
D.
Carnegie
,
E.
Rafailov
, and
V. N.
Astratov
,
Opt. Lett.
36
,
2862
(
2011
).
20.
R. R.
Kingslake
,
Optical System Design
(
Academic
,
London
,
1983
).
21.
A.
Devilez
,
B.
Stout
,
N.
Bonod
, and
E.
Popov
,
Opt. Express
16
,
14200
(
2008
).
22.
A.
Darafsheh
and
V. N.
Astratov
,
Appl. Phys. Lett.
100
,
061123
(
2012
).
23.
A.
Darafsheh
,
A.
Fardad
,
N. M.
Fried
,
A. N.
Antoszyk
,
H. S.
Ying
, and
V. N.
Astratov
,
Opt. Express
19
,
3440
(
2011
);
[PubMed]
T. C.
Hutchens
,
A.
Darafsheh
,
A.
Fardad
,
A. N.
Antoszyk
,
H. S.
Ying
,
V. N.
Astratov
, and
N. M.
Fried
,
J. Biomed. Opt.
17
,
068004
(
2012
).
[PubMed]
You do not currently have access to this content.