A first principles quantum-mechanical method for estimating intrinsic breakdown strength of insulating materials has been implemented based on an average electron model which assumes that the breakdown occurs when the average electron energy gain from the electric field exceeds the average energy loss to phonons. The approach is based on density functional perturbation theory and on the direct integration of electronic scattering probabilities over all possible final states, with no adjustable parameters. The computed intrinsic breakdown field for several prototypical materials compares favorably with available experimental data. This model also provides physical insight into the material properties that affect breakdown.

1.
R.
Stratton
,
Progress in Dielectrics 3
, edited by
J. B.
Birks
and
J.
Hart
(
Wiley
,
New York
,
1961
), p.
235
.
2.
M.
Sparks
,
D. L.
Mills
,
R.
Warren
,
T.
Holstein
,
A. A.
Maradudin
,
L. J.
Sham
,
E.
Loh
, Jr.
, and
D. F.
King
,
Phys. Rev. B
24
,
3519
(
1981
).
3.
A.
Von Hippel
,
J. Appl. Phys.
8
,
815
(
1937
).
4.
H.
Fröhlich
,
Proc. R. Soc. London, Ser. A
188
(
1015
),
521
532
(
1947
).
5.
H.
Fröhlich
,
Proc. R. Soc. London, Ser. A
160
(
901
),
230
241
(
1937
).
6.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
7.
O. D.
Restrepo
,
K.
Varga
, and
S. T.
Pantelides
,
Appl. Phys. Lett.
94
,
212103
(
2009
).
8.
J.
Sjakste
,
N.
Vast
, and
V.
Tyuterev
,
Phys. Rev. Lett.
99
,
236045
(
2007
).
9.
P.
Giannozzi
,
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
10.
M. V.
Fischetti
,
IEEE Trans. Electron Devices
38
,
634
(
1991
).
11.
J. N.
Park
,
K.
Rose
, and
K. E.
Mortenson
,
J. Appl. Phys.
38
,
5343
(
1967
).
12.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
)
13.
R. T.
Poole
,
J. G.
Jenkin
,
J.
Liesegang
, and
R. C. G.
Leckey
,
Phys. Rev. B
11
,
5179
(
1975
).
14.
S. L.
Miller
,
Phys. Rev.
99
,
1234
(
1955
).
15.
P.
Liu
,
R.
Yen
, and
N.
Bloembergen
,
IEEE J. Quantum Electron.
QE-14
(
8
),
574
(
1978
).
16.
E.
Yablonovitch
,
Appl. Phys. Lett.
19
,
495
(1971).
17.
W. L.
Smith
,
J. H.
Bechtel
, and
N.
Bloembergen
,
Phys. Rev. B
12
,
706
(
1975
).
18.
L. H.
Holway
and
D. W.
Fradin
,
J. Appl. Phys.
46
,
279
(
1975
).
19.
L. M.
Wang
,
Proceedings of the 25th International Conference on Microelectronics
, Belgrade, Serbia and Montenegro, 14–17 May (
2006
), p.
576
20.
H. K.
Jung
,
K.
Taniguchi
, and
C.
Hamaguchi
,
J. Appl. Phys.
79
,
2473
(
1996
).
21.
F.
Bertazzi
,
M.
Moresco
, and
E.
Bellotti
,
J. Appl. Phys.
106
,
063718
(
2009
).
You do not currently have access to this content.