Charge compensation at the interface is a fundamental phenomenon determining the operation conditions of thin-film devices incorporating ferroelectrics. The underlying mechanisms have been thoroughly addressed in perovskite ferroelectrics where the charge compensation originates from injection through the interface-adjacent layer. Here, we demonstrate that polarization screening in the polymer ferroelectric polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) films can be dominated by charge injection through the bulk, unlike ferroelectric oxides. The experimental evidence relies on polarization imprint under applied field and time-dependence of the dielectric constant. A linearized electrostatic model correctly accounts for the observed trends and links their occurrence to the unique properties of P(VDF-TrFE).

1.
S.
Horiuchi
and
Y.
Tokura
,
Nature Mater.
7
,
357
366
(
2008
).
2.
M.
Poulsen
and
S.
Ducharme
,
IEEE Trans. Dielectr. Electr. Insul.
17
,
1028
1035
(
2010
).
3.
T.
Furukawa
,
Y.
Takahashi
, and
T.
Nakajima
,
Curr. Appl. Phys.
10
,
e62
e67
(
2010
).
4.
R. C. G.
Naber
,
C.
Tanase
,
P. W. M.
Blom
,
G. H.
Gelinck
,
A. W.
Marsman
,
F. J.
Touwslager
,
S.
Setayesh
, and
D. M.
de Leeuw
,
Nature Mater.
4
,
243
248
(
2005
).
5.
K.
Asadi
,
D. M.
de Leeuw
,
B.
de Boer
, and
P. W. M.
Blom
,
Nature Mater.
7
,
547
50
(
2008
).
6.
R. C. G.
Naber
,
K.
Asadi
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
B.
de Boer
,
Adv. Mater.
22
,
933
45
(
2010
).
7.
Y.
Park
,
I.
Bae
,
S.
Kang
,
J.
Chang
, and
C.
Park
,
IEEE Trans. Dielectr. Electric. Insul.
17
,
1135
1163
(
2010
).
8.
I.
Stolichnov
,
S. W. E.
Riester
,
H. J.
Trodahl
,
N.
Setter
,
A. W.
Rushforth
,
K. W.
Edmonds
,
R. P.
Campion
,
C. T.
Foxon
,
B. L.
Gallagher
, and
T.
Jungwirth
,
Nature Mater.
7
,
464
467
(
2008
).
9.
Y.
Yuan
,
T. J.
Reece
,
P.
Sharma
,
S.
Poddar
,
S.
Ducharme
,
A.
Gruverman
,
Y.
Yang
, and
J.
Huang
,
Nature Mater.
10
,
296
302
(
2011
).
10.
M.
Grossmann
,
O.
Lohse
,
D.
Bolten
,
U.
Boettger
,
T.
Schneller
, and
R.
Waser
,
J. Appl. Phys.
92
,
2680
(
2002
).
11.
A. K.
Tagantsev
,
I.
Stolichnov
,
N.
Setter
, and
J. S.
Cross
,
J. Appl. Phys.
96
,
6616
(
2004
).
12.
M.
Grossmann
,
O.
Lohse
,
D.
Bolten
,
U.
Boettger
,
T.
Schneller
, and
R.
Waser
,
Appl. Phys. Lett.
80
,
1427
(
2002
).
13.
S.
Fujisaki
,
H.
Ishiwara
, and
Y.
Fujisaki
,
Appl. Phys. Express
1
,
081801
(
2008
).
14.
A.
Gerber
,
H.
Kohlstedt
,
M.
Fitsilis
,
R.
Waser
,
T. J.
Reece
,
S.
Ducharme
, and
E.
Rije
,
J. Appl. Phys.
100
,
024110
(
2006
).
15.
T. N.
Ng
,
B.
Russo
, and
A. C.
Arias
,
J. Appl. Phys.
106
,
094504
(
2009
).
16.
T. J.
Reece
,
A.
Gerber
,
H.
Kohlstedt
, and
S.
Ducharme
,
J. Appl. Phys.
108
,
024109
(
2010
).
17.
K.
Müller
,
K.
Henkel
,
D.
Mandal
,
B.
Seime
,
I.
Paloumpa
, and
D.
Schmeißer
,
Phys. Status Solidi A
208
,
330
342
(
2011
).
18.
R.
Gysel
,
I.
Stolichnov
,
A. K.
Tagantsev
,
S. W. E.
Riester
,
N.
Setter
,
G. A.
Salvatore
,
D.
Bouvet
, and
A. M.
Ionescu
,
Appl. Phys. Lett.
94
,
263507
(
2009
).
19.
K.
Aizawa
,
B.-E.
Park
,
Y.
Kawashima
,
K.
Takahashi
, and
H.
Ishiwara
,
Appl. Phys. Lett.
85
,
3199
(
2004
).
You do not currently have access to this content.