The defect mechanisms that underpin the high energy density dielectric 0.8BaTiO3–0.2Bi(Zn1/2Ti1/2)O3 were investigated. Characterization of the nominally stoichiometric composition revealed the presence of a Ti3+-related defect center, which is correlated with lower resistivities and an electrically heterogeneous microstructure. In compositions with 2 mol. % Ba-deficiency, a barium vacancy-oxygen vacancy pair (VBaVO), acted as an electron-trapping site. This defect was responsible for a significant change in the transport behavior with a high resistivity and an electrically homogeneous microstructure.

1.
R.
Guo
,
L. E.
Cross
,
S.-E.
Park
,
B.
Noheda
,
D. E.
Cox
, and
G.
Shirane
,
Phys. Rev. Lett.
84
,
5423
(
2000
).
2.
W.
Liu
and
X.
Ren
,
Phys. Rev. Lett.
103
,
257602
(
2009
).
3.
G. H.
Haertling
,
J. Am. Ceram. Soc.
82
,
797
(
1999
).
4.
J.
Rodel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
,
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
5.
D. C.
Sinclair
and
A. R.
West
,
J. Appl. Phys.
66
,
3850
(
1989
).
6.
T.
Tsurumi
,
H.
Adachi
,
H.
Kakemoto
,
S.
Wada
,
Y.
Mizuno
,
H.
Chazono
, and
H.
Kishi
,
Jpn. J. Appl. Phys. Part 1
41
,
6929
(
2002
).
7.
D. E.
McCauley
,
M. S. H.
Chu
, and
M. H.
Megherhi
,
J. Am. Ceram. Soc.
89
,
193
(
2006
).
8.
I.
Levin
,
E.
Cockayne
,
V.
Krayzman
,
J. C.
Woicik
,
S.
Lee
, and
C. A.
Randall
,
Phys. Rev. B
83
,
094122
(
2011
).
9.
F. D.
Morrison
,
D. C.
Sinclair
, and
A. R.
West
,
J. Appl. Phys.
86
,
6355
(
1999
).
10.
I.
Grinberg
,
M. R.
Suchomel
,
W.
Dmowski
,
S. E.
Mason
,
H.
Wu
,
P. K.
Davies
, and
A. M.
Rappe
,
Phys. Rev. Lett.
98
,
107601
(
2007
).
11.
C. C.
Huang
and
D. P.
Cann
,
J. Appl. Phys.
104
,
024117
(
2008
).
12.
H.
Ogihara
,
C. A.
Randall
, and
S.
Trolier-McKinstry
,
J. Am. Ceram. Soc.
92
,
1719
(
2009
).
13.
C. C.
Huang
,
D. P.
Cann
,
X.
Tan
, and
N.
Vittayakorn
,
J. Appl. Phys.
102
,
044103
(
2007
).
14.
N.
Raengthon
,
T.
Sebastian
,
D.
Cummings
,
I. M.
Reaney
, and
D. P.
Cann
, “
BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 Ceramics for High-Temperature Capacitor Applications
,”
J. Am. Ceram. Soc.
15.
N.
Raengthon
and
D. P.
Cann
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1954
(
2011
).
16.
N.
Raengthon
and
D. P.
Cann
,
J. Am. Ceram. Soc.
95
,
1604
(
2012
).
17.
J. D.
Lindberg
,
Appl. Opt.
26
,
2900
(
1987
).
18.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
,
Phys. Status Solidi B
15
,
627
(
1966
).
19.
N. S.
Hari
,
P.
Padmini
, and
T. R. N.
Kutty
,
J. Mater. Sci. Mater. Electron.
8
,
15
(
1997
).
20.
R.
Scharfschwerdt
,
A.
Mazur
,
O. F.
Schirmer
,
H.
Hesse
, and
S.
Mendricks
,
Phys. Rev. B
54
,
15284
(
1996
).
21.
V. V.
Laguta
,
A. M.
Slipenyuk
,
I. P.
Bykov
,
M. D.
Glinchuk
,
M.
Maglione
,
A. G.
Bilous
,
O. I.
V'yunov
,
J.
Rosa
, and
L.
Jastrabik
,
J. Appl. Phys.
97
,
073707
(
2005
).
22.
Y.
Uchida
,
A.
Kai
,
T.
Murata
, and
T.
Miki
,
Jpn. J. Appl. Phys. Part 1
43
,
669
(
2004
).
23.
S.
Jida
and
T.
Miki
,
J. Appl. Phys.
80
,
5234
(
1996
).
24.
R. N.
Schwartz
and
B. A.
Wechsler
,
Phys. Rev. B
48
,
7057
(
1993
).
25.
W. L.
Warren
,
D.
Dimos
,
G. E.
Pike
, and
K.
Vanheusden
,
Appl. Phys. Lett.
67
,
1689
(
1995
).
26.
G.
Er
,
S.
Ishida
, and
N.
Takeuchi
,
J. Mater. Sci.
34
,
4265
(
1999
).
27.
T.
Kolodiazhnyi
and
A.
Petric
,
J. Phys. Chem. Solid
64
,
953
(
2003
).
28.
R. A.
Eichel
,
Phys. Chem. Chem. Phys.
13
,
368
(
2011
).
29.
30.
S.
Lee
,
R. D.
Levi
,
W.
Qu
,
S. C.
Lee
, and
C. A.
Randall
,
J. Appl. Phys.
107
,
023523
(
2010
).
31.
S.
Lee
,
W. H.
Woodford
, and
C. A.
Randall
,
Appl. Phys. Lett.
92
,
201909
(
2008
).
32.
A.
Chassé
,
St.
Borek
,
K.-M.
Schindler
,
M.
Trautmann
,
M.
Huth
,
F.
Steudel
,
L.
Makhova
,
J.
Gräfe
, and
R.
Denecke
,
Phys. Rev. B
84
,
195135
(
2011
).
33.
S.
Saha
,
T. P.
Sinha
, and
A.
Mookerjee
,
Phys. Rev. B
62
,
8828
(
2000
).
34.
H.
Sumi
and
Y.
Toyozawa
,
J. Phys. Soc. Jpn.
31
,
342
(
1971
).
35.
G. D.
Cody
,
T.
Tiedje
,
B.
Abeles
,
B.
Brooks
, and
Y.
Goldstein
,
Phys. Rev. Lett.
47
,
1480
(
1981
).
36.
S.
Knief
and
W.
von Niessen
,
Phys. Rev. B
59
,
12940
(
1999
).
37.
T.
He
,
P.
Ehrhart
, and
P.
Meuffels
,
J. Appl. Phys.
79
,
3219
(
1996
).
38.
K.-D.
Becker
,
M.
Schrader
,
H.-S.
Kwon
, and
H.-I.
Yoo
,
Phys. Chem. Chem. Phys.
11
,
3082
(
2009
).
39.
R.
Waser
,
T.
Baiatu
, and
K. H.
Hardtl
,
J. Am. Ceram. Soc.
73
,
1645
(
1990
).
40.
C.
Ang
,
Z.
Yu
, and
L. E.
Cross
,
Phys. Rev. B
62
,
228
(
2000
).
41.
O.
Raymond
,
R.
Font
,
N.
Suarez-Almodovar
,
J.
Portelles
, and
J. M.
Siquerios
,
J. Appl. Phys.
97
,
084107
(
2005
).
42.
R.
Huybrechts
,
K.
Ishizaki
, and
M.
Takata
,
J. Mater. Sci.
30
,
2463
(
1995
).
43.
J.
Daniels
and
R.
Wernicke
,
Philips Res. Rep.
31
,
544
(
1976
).
44.
P.
Erhart
and
K.
Albe
,
J. Appl. Phys.
102
,
084111
(
2007
).
You do not currently have access to this content.