The effects of lateral constraint and substrate clamping on piezoresponse of ferroelectric materials at small scale are quantitatively evaluated in PbZr0.52Ti0.48O3 nanotubes. Lateral clamping results in a reduction of the extrinsic contributions to the piezoresponse by almost an order of magnitude at low and intermediate fields. Similarly, at aspect ratios below 3:1 (height to width), constraint to the substrate leads to a drastic reduction of the extrinsic contributions to the piezoelectric response of the ferroelectric nanostructures. Both behaviors can be explained by an increased energy requirement for formation and motion of the ferroelastic non-180° domain walls in mechanically constrained systems.

1.
V.
Nagarajan
,
A.
Roytburd
,
A.
Stanishevsky
,
S.
Prasertchoung
,
T.
Zhao
,
L.
Chen
,
J.
Melngailis
,
O.
Auciello
, and
R.
Ramesh
,
Nature Mater.
2
,
43
47
(
2003
).
2.
S.
Buhlmann
,
B.
Dwir
,
J.
Baborowski
, and
P.
Muralt
,
Appl. Phys. Lett.
80
(
17
),
3195
3195
(
2002
).
3.
J.
Wang
,
C. S.
Sandu
, and
N.
Setter
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
(
9
),
1813
1819
(
2009
).
4.
H. M.
Cheng
,
J. M.
Ma
,
Z. G.
Zhao
,
D.
Qiang
,
Y. X.
Li
, and
X.
Yao
,
J. Am. Ceram. Soc.
75
(
5
),
1123
1128
(
1992
).
5.
S.
Xu
,
B. J.
Hansen
, and
Z. L.
Wang
,
Nat. Commun.
1
,
93
(
2010
).
6.
S. S. N.
Bharadwaja
,
M.
Olszta
,
S.
Trolier-McKinstry
,
X.
Li
,
T. S.
Mayer
, and
F.
Roozeboom
,
J. Am. Ceram. Soc.
89
(
9
),
2695
2701
(
2006
).
7.
E. D.
Mishina
,
N. E.
Sherstyuk
,
V. I.
Stadnuchyuk
,
K. A.
Vorotilov
,
V. A.
Vasil'ev
,
A. S.
Sigov
,
O. M.
Zhigalina
,
N.
Ohta
, and
S.
Nakabayash
,
Ferroelectrics
286
,
927
933
(
2003
).
8.
S. S.
Nonnenmann
,
O. D.
Leaffer
,
E. M.
Gallo
,
M. T.
Coster
, and
J. E.
Spanier
,
Nano Lett.
10
(
2
),
542
546
(
2010
).
9.
A.
Bernal
,
A.
Tselev
,
S.
Kalinin
, and
N.
Bassiri-Gharb
,
Adv. Mater.
24
(
9
),
1160
1165
(
2012
).
10.
S.
Jesse
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
88
(
6
),
062908
(
2006
).
11.
P.
Bintachitt
,
S.
Jesse
,
D.
Damjanovic
,
Y.
Han
,
I. M.
Reaney
,
S.
Trolier-McKinstry
, and
S. V.
Kalinin
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
16
),
7219
7224
(
2010
).
12.
S.
Jesse
,
S. V.
Kalinin
,
R.
Proksch
,
A. P.
Baddorf
, and
B. J.
Rodriguez
,
Nanotechnology
18
(
43
),
435503
(
2007
).
13.
N.
Bassiri-Gharb
,
I.
Fujii
,
E.
Hong
,
S.
Trolier-Mckinstry
,
D. V.
Taylor
, and
D.
Damjanovic
,
J. Electroceram.
19
(
1
),
47
65
(
2007
).
14.
L.
Rayleigh
,
Philos. Mag.
(
1887
).
15.
Y.
Jing
,
J. E.
Blendell
, and
K. J.
Bowman
,
J. Appl. Phys.
109
(
7
),
074110
(
2011
).
16.
J.
Yin
and
W.
Cao
,
Appl. Phys. Lett.
79
(
27
),
4556
4558
(
2001
).
17.
R.
Ahluwalia
and
W. W.
Cao
,
J. Appl. Phys.
93
(
1
),
537
544
(
2003
).
18.
F.
Huaxiang
and
R. E.
Cohen
,
Nature
403
(
6767
),
281
283
(
2000
).
19.
A.
Bernal
and
N.
Bassiri-Gharb
,
Appl. Phys. Lett.
95
(
4
),
042902
(
2009
).
20.
N.
Ng
,
R.
Ahluwalia
,
H. B.
Su
, and
F.
Boey
,
Acta Mater.
57
(
7
),
2047
2054
(
2009
).
21.
N.
Balke
,
S.
Jesse
,
A. N.
Morozovska
,
E.
Eliseev
,
D. W.
Chung
,
Y.
Kim
,
L.
Adamczyk
,
R. E.
Garcia
,
N.
Dudney
, and
S. V.
Kalinin
,
Nat. Nanotechnol.
5
(
10
),
749
754
(
2010
).
22.
Y.
Matsui
,
M.
Hiratani
,
Y.
Kumagai
,
H.
Miura
, and
Y.
Fujisaki
,
Jpn. J. Appl. Phys., Part 2
37
(
4B
),
L465
L467
(
1998
).
23.
D. S.
Fu
,
T.
Ogawa
,
H.
Suzuki
, and
K.
Ishikawa
,
Appl. Phys. Lett.
77
(
10
),
1532
1534
(
2000
).
24.
K.
Lee
,
K.
Kim
,
S. J.
Kwon
, and
S.
Baik
,
Appl. Phys. Lett.
85
(
20
),
4711
4713
(
2004
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4751343 for detailed description of samples processed in flowable oxide template and for detailed description of the finite element modeling results.

Supplementary Material

You do not currently have access to this content.