Optical properties of polar and nonpolar nitride quantum dots (QDs) are determined on the basis of a microscopic theory which combines a continuum elasticity approach to the polarization potential, a tight-binding model for the electronic energies and wavefunctions, and a many-body theory for the optical properties. For nonpolar nitride quantum dots, we find that optical absorption and emission spectra exhibit a weak ground-state oscillator strength in a single-particle calculation whereas the Coulomb configuration interaction strongly enhances the ground-state transitions. This finding sheds new light on existing discrepancies between previous theoretical and experimental results for these systems, as a weak ground state transition was predicted because of the spatial separation of the corresponding electron and hole state due to intrinsic fields whereas experimentally fast optical transitions have been observed.

2.
C.
Wetzel
,
M.
Zhu
,
J.
Senawiratne
,
T.
Detchprohm
,
P.
Persans
,
L.
Liu
,
E.
Preble
, and
D.
Hanser
,
J. Cryst. Growth
310
,
3987
(
2008
).
3.
S.
Founta
,
F.
Rol
,
E.
Bellet-Amalric
,
J.
Bleuse
,
B.
Daudin
,
B.
Gayral
,
H.
Mariette
, and
C.
Moisson
,
Appl. Phys. Lett.
86
,
171901
(
2005
).
4.
S.
Schulz
,
A.
Berube
, and
E. P.
O’Reilly
,
Phys. Rev. B
79
,
081401
(
2009
).
5.
O.
Marquardt
,
T.
Hickel
, and
J.
Neugebauer
,
J. Appl. Phys.
106
,
083707
(
2009
).
6.
S.
Schulz
and
E. P.
O’Reilly
,
Phys. Status Solidi C
7
,
80
(
2010
).
7.
M.
Braskén
,
M.
Lindberg
,
D.
Sundholm
, and
J.
Olsen
,
Phys. Rev. B
61
,
7652
(
2000
).
8.
Y. Z.
Hu
,
M.
Lindberg
, and
S. W.
Koch
,
Phys. Rev. B
42
,
1713
(
1990
).
9.
A.
Schliwa
,
M.
Winkelnkemper
, and
D.
Bimberg
,
Phys. Rev. B
79
,
075443
(
2009
).
10.
S.
Schulz
,
S.
Schumacher
, and
G.
Czycholl
,
Phys. Rev. B
73
,
245327
(
2006
).
11.
A.
Franceschetti
,
H.
Fu
,
L. W.
Wang
, and
A.
Zunger
,
Phys. Rev. B
60
,
1819
(
1999
).
12.
A.
Rosenauer
,
T.
Mehrtens
,
K.
Müller
,
K.
Gries
,
M.
Schowalter
,
P. V.
Satyam
,
S.
Bley
,
C.
Tessarek
,
D.
Hommel
,
K.
Sebald
 et al,
Ultramicroscopy
111
,
1316
(
2011
).
13.
C.
Tessarek
,
S.
Figge
,
T.
Aschenbrenner
,
S.
Bley
,
A.
Rosenauer
,
M.
Seyfried
,
J.
Kalden
,
K.
Sebald
,
J.
Gutowski
, and
D.
Hommel
,
Phys. Rev. B
83
,
115316
(
2011
).
14.
K.
Sebald
,
J.
Kalden
,
H.
Lohmeyer
, and
J.
Gutowski
,
Phys. Status Solidi B
248
,
1777
(
2011
).
15.
X.
Yang
,
M.
Arita
,
S.
Kako
, and
Y.
Arakawa
,
Appl. Phys. Lett.
99
,
061914
(
2011
).
16.
D.
Mourad
,
S.
Barthel
, and
G.
Czycholl
,
Phys. Rev. B
81
,
165316
(
2010
).
17.
L.-W.
Wang
and
A.
Zunger
,
J. Chem. Phys.
100
,
2394
(
1994
).
18.
Q.
Yan
,
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
M.
Scheffler
, and
C. G.
Van de Walle
,
Semicond. Sci. Technol.
26
,
014037
(
2011
).
19.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
20.
O.
Marquardt
,
S.
Boeck
,
C.
Freysoldt
,
T.
Hickel
, and
J.
Neugebauer
,
Comput. Phys. Commun.
181
,
765
(
2010
).
21.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
22.
S.
Schulz
,
D.
Mourad
, and
G.
Czycholl
,
Phys. Rev. B
80
,
165405
(
2009
).
23.
J.
Seebeck
,
M.
Lorke
,
S.
Schulz
,
K.
Schuh
,
P.
Gartner
, and
F.
Jahnke
,
Phys. Status Solidi B
248
(
8
),
1871
(
2011
).
24.
N.
Baer
,
P.
Gartner
, and
F.
Jahnke
,
Eur. Phys. J. B
42
,
213
(
2004
).
25.
N.
Baer
,
S.
Schulz
,
P.
Gartner
,
S.
Schumacher
,
G.
Czycholl
, and
F.
Jahnke
,
Phys. Rev. B
76
,
75310
(
2007
).
You do not currently have access to this content.