The thermodynamic efficiency of a single junction solar cell is bounded by the Shockley-Queisser detailed balance limit at ∼30% [W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961)]. This maximal efficiency is considered achievable using a semiconductor within a restricted bandgap range of 1.1-1.5 eV. This work upends this assumption by demonstrating that the optimal material bandgap can be shifted to lower energies by placing selective reflectors around the solar cell. This technique opens new possibilities for lower bandgap materials to achieve the thermodynamic limit and to be effective in high efficiency solar cells.

1.
M. A.
Green
,
Third Generation Photovoltaics
(
Springer
,
Berlin
,
2003
).
2.
C.
Wadia
,
A. P.
Alivisatos
, and
D. M.
Kammen
,
Environ. Sci. Technol.
43
,
2072
(
2009
).
3.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
4.
W.
Ruppel
and
P.
Wurfel
,
IEEE Trans. Electron Devices
27
,
877
(
1980
).
5.
T.
Markvart
,
Phys. Status Solidi A
205
,
2752
(
2008
).
6.
T.
Markvart
,
J. Opt. A, Pure Appl. Opt.
10
,
015008
(
2008
).
7.
Z. R.
Abrams
,
A.
Niv
, and
X.
Zhang
,
J. Appl. Phys.
109
,
114905
(
2011
).
8.
M. A.
Green
,
IEEE Trans. Electron Devices
31
,
671
(
1984
).
9.
J. E.
Parrott
,
IEE Proc.
133
,
314
(
1986
).
10.
Physical Limitations to Photovoltaic Energy Conversion
, edited by
A.
Luque
and
G. L.
Araujo
(
Adam Hilger
,
Bristol
,
1990
).
11.
G. L.
Araujo
and
A.
Marti
,
Sol. Energy Mater. Sol. Cells
33
,
213
(
1994
).
12.
E.
Yablonovitch
,
Phys. Rev. Lett.
58
,
2059
(
1987
).
13.
T.
Markvart
,
Appl. Phys. Lett.
98
,
071107
(
2011
).
14.
R.
Strandberg
and
T. W.
Reenaas
,
Appl. Phys. Lett.
97
,
031910
(
2010
).
15.
V.
Badescu
,
J. Phys. D: Appl. Phys.
38
,
2166
(
2005
).
16.
C.
Ulbrich
,
S.
Fahr
,
J.
Üpping
,
M.
Peters
,
T.
Kirchartz
,
C.
Rockstuhl
,
R.
Wehrspohn
,
A.
Gombert
,
F.
Lederer
, and
U.
Rau
,
Phys. Status Solidi A
205
,
2831
(
2008
).
17.
R. T.
Ross
and
J. M.
Collins
,
J. Appl. Phys.
51
,
4504
(
1980
).
18.
T.
Tiedje
,
E.
Yablonovitch
,
G. D.
Cody
, and
B. G.
Brooks
,
IEEE Trans. Electron Devices
31
,
711
(
1984
).
19.
T. S.
Moss
,
Phys. Status Solidi B
101
,
555
(
1980
).
20.
M.
Grundmann
,
The Physics of Semiconductors
, 2nd ed. (
Springer
,
Berlin
,
2010
).
21.
A.
Vossier
,
B.
Hirsch
, and
J. M.
Gordon
,
Appl. Phys. Lett.
97
,
193509
(
2010
).
22.
P. C.
Findlay
,
C. R.
Pidgeon
,
H.
Pellemans
,
R.
Kotitschke
,
B. N.
Murdin
,
T.
Ashley
,
A. D.
Johnson
,
A. M.
White
, and
C. T.
Elliott
,
Semicond. Sci. Technol.
14
,
1026
(
1999
).
23.
T.
Ashley
,
T. M.
Burke
,
G. J.
Pryce
,
A. R.
Adams
,
A.
Andreev
,
B. N.
Murdin
,
E. P.
O’Reilly
, and
C. R.
Pidgeon
,
Solid State Electron.
47
,
387
(
2003
).
24.
F.
Garcia-Santamaria
,
S.
Brovelli
,
R.
Viswanatha
,
J. A.
Hollingsworth
,
H.
Htoon
,
S. A.
Crooker
, and
V. I.
Klimov
,
Nano Lett.
11
,
687
(
2011
).
25.
S.
Adachi
,
J. Appl. Phys.
66
,
6030
(
1989
).
26.
G.
Stollwerck
,
O. V.
Sulima
, and
A. W.
Bett
,
IEEE Trans. Electron. Devices
47
,
448
(
2000
).
27.
P. P.
Altermatt
,
T.
Kiesewetter
,
K.
Ellmer
, and
H.
Tributsch
,
Sol. Energy Mater. Sol. Cells
71
,
181
(
2002
).
28.
Z.
Yu
,
A.
Raman
, and
S.
Fan
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
17491
(
2010
).
29.
H. A.
Atwater
and
A.
Polman
,
Nature Mater.
9
,
205
(
2010
).
30.
P. D.
Dapkus
,
N.
Holonyak
,
R. D.
Burnham
, and
D. L.
Keune
,
Appl. Phys. Lett.
16
,
93
(
1970
).
31.
P. V.
Kamat
,
N. M.
Dimitrijevic
, and
A. J.
Nozik
,
J. Phys. Chem.
93
,
2873
(
1989
).
32.
33.
K. L.
Litvinenko
,
L.
Nikzad
,
C. R.
Pidgeon
,
J.
Allam
,
L. F.
Cohen
,
T.
Ashley
,
M.
Emeny
,
W.
Zawadzki
, and
B. N.
Murdin
,
Phys. Rev. B
77
,
033204
(
2008
);
C. R.
Pidgeon
, personal communication (
2011
).
34.
M.
Peters
,
C.
Ulbrich
,
J. C.
Goldschmidt
,
J.
Fernandez.
,
G.
Siefer
, and
B.
Bläsi
,
Opt. Express
19
,
A136
(
2011
).
You do not currently have access to this content.