The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ∼500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials, and the large range of the length-scale—from nanometers to micrometers—of the graphene and silver particle fillers. The obtained results are important for the thermal management of advanced electronics and optoelectronics.

1.
S. P.
Gurrum
,
S. K.
Suman
,
Y. K.
Joshi
, and
A. G.
Fedorov
,
IEEE Trans. Device Mater. Reliab.
4
,
709
(
2004
).
2.
A. A.
Balandin
,
IEEE Spectrum
46
(
10
),
34
(
2009
).
3.
J.
Wei
,
Heat Transfer Eng.
29
(
2
),
178
(
2010
).
4.
R.
Mahajan
,
C. P.
Chiu
, and
R.
Prasher
,
Electron. Cooling
1
,
10
(
2004
).
5.
D.
Blazej
,
Electron. Cooling
9
,
14
(
2003
).
6.
F.
Sarvar
,
D. C.
Whalley
, and
P. P.
Conway
, “
Thermal interface materials: A review of the state of the art
,” in
Proceedings of the 1st IEEE Electron Systemintegration Technology Conference
(
IEEE, Dresden
,
Germany
,
2006
), Vol. 2, p.
1292
.
7.
J. P.
Gwinn
and
R. L.
Webb
,
Microelectron. J.
34
,
215
(
2003
).
8.
D. L.
Saums
,
Electronic Cooling Magazine
(May
2007
); see at http://www.electronics-cooling.com/.
9.
W. E.
Jones
, Jr.
,
J.
Chiguma
,
E.
Johnson
,
A.
Pachamuthu
, and
D.
Santos
,
Materials
3
,
1478
(
2010
).
10.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
11.
D. L.
Nika
,
E. P.
Pokatilov
,
A. S.
Askerov
, and
A. A.
Balandin
,
Phys. Rev. B
79
,
155413
(
2009
);
D. L.
Nika
,
S.
Ghosh
,
E. P.
Pokatilov
, and
A. A.
Balandin
,
Appl. Phys. Lett.
94
,
203103
(
2009
).
12.
A. A.
Balandin
,
S.
Ghosh
,
D. L.
Nika
, and
E. P.
Pokatilov
,
Fullerenes, Nanotubes, Carbon Nanostruct.
18
,
474
(
2010
);
S.
Ghosh
,
D. L.
Nika
,
E. P.
Pokatilov
, and
A. A.
Balandin
,
New J. Phys.
11
,
095012
(
2009
).
13.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nature Mater.
9
,
555
(
2010
).
14.
A. A.
Balandin
,
Nature Mater.
10
,
569
(
2011
).
15.
A. A.
Green
and
M. C.
Hersam
,
Nano Lett.
9
,
4031
(
2009
).
16.
M.
Lotya
,
P. J.
King
,
U.
Khan
,
S.
De
, and
J. N.
Coleman
,
ACS Nano
4
,
3155
(
2010
).
17.
S. E.
Gustafsson
,
Rev. Sci. Instrum.
62
(
3
),
797
(
1991
).
18.
S.
Ghosh
,
D.
Teweldebrhan
,
J. R.
Morales
,
J. E.
Garay
, and
A. A.
Balandin
,
J. Appl. Phys.
106
,
113507
(
2009
).
19.
L.
Xia
,
P.
Zhang
, and
R. Z.
Wang
,
Carbon
48
,
2538
(
2010
).
21.
V.
Goyal
,
S.
Subrina
,
D. L.
Nika
, and
A. A.
Balandin
,
Appl. Phys. Lett.
97
,
031904
(
2010
).
22.
M. A.
Rafiee
,
J.
Rafiee
,
Z.
Wang
,
H.
Song
,
Z.-Z.
Yu
, and
N.
Koratkar
,
ACS Nano
3
,
3884
(
2009
).
23.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
24.
D.
Konatham
,
K. N. D.
Bui
,
D. V.
Papavassiliou
, and
A.
Striolo
,
Mol. Phys.
109
,
97
(
2011
);
D.
Konatham
and
A.
Striolo
,
Appl. Phys. Lett.
95
,
163105
(
2009
).
25.
J.
Felba
, “
Thermally conductive nanocomposites
”, in
Nano-Bio-Electronic, Photonic and MEMS Packaging
, edited by
C. P.
Wong
,
K.-S.
Moon
, and
Y.
Li
(
Springer Science
,
New York
,
2010
), pp.
277
314
.
26.
K. M. F.
Shahil
and
A. A.
Balandin
,
Nano Lett.
12
,
861
(
2012
).
You do not currently have access to this content.