This work investigates resonances in a capacitively coupled, low pressure krypton microdischarge operated at 2.5 GHz. A circuit model for the device, which has a length dimension of approximately 1 mm, calculates impedance values for a range of electron densities. The model results predict several “parallel” and “series” resonances at the driving frequency when the electron density is approximately 8 × 1011 cm−3 and 5 × 1012 cm−3. The series resonance occurs when the resistance approaches the output impedance of the radio-frequency signal source, minimizing the reflected power. These resonances explain an experimentally observed jump in intensity with increasing input power.

1.
V. P. T.
Ku
,
B. M.
Annaratone
, and
J. E.
Allen
,
J. Appl. Phys.
84
(
12
),
6536
(
1998
).
2.
K. E.
Orlov
and
A. S.
Smirnov
,
Plasma Sources Sci. Technol.
10
,
541
(
2001
).
3.
V.
Godyak
,
Soviet Radio Frequency Discharge Research
(
Delphic Associates, Inc.
,
Falls Church
,
1986
).
4.
F.
Iza
and
J. A.
Hopwood
,
Plasma Science, IEEE Trans.
31
(
4
),
782
(
2003
).
5.
F.
Iza
and
J. A.
Hopwood
,
Plasma Science, IEEE Trans.
32
(
2
),
498
(
2004
).
6.
F.
Iza
and
J. A.
Hopwood
,
Plasma Science, IEEE Trans.
33
(
2
),
306
(
2005
).
7.
F.
Iza
and
J. A.
Hopwood
,
Plasma Sources Sci. Technol.
14
(
2
),
397
(
2005
).
8.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
,
Hoboken
,
2005
).
9.
Y.
Raizer
,
M.
Shneider
, and
N.
Yatsenko
,
Radio-Frequency Capacitive Discharges
(
CRC
,
Boca Raton
,
1995
).
You do not currently have access to this content.