This work investigates resonances in a capacitively coupled, low pressure krypton microdischarge operated at 2.5 GHz. A circuit model for the device, which has a length dimension of approximately 1 mm, calculates impedance values for a range of electron densities. The model results predict several “parallel” and “series” resonances at the driving frequency when the electron density is approximately 8 × 1011 cm−3 and 5 × 1012 cm−3. The series resonance occurs when the resistance approaches the output impedance of the radio-frequency signal source, minimizing the reflected power. These resonances explain an experimentally observed jump in intensity with increasing input power.
REFERENCES
1.
V. P. T.
Ku
, B. M.
Annaratone
, and J. E.
Allen
, J. Appl. Phys.
84
(12
), 6536
(1998
).2.
K. E.
Orlov
and A. S.
Smirnov
, Plasma Sources Sci. Technol.
10
, 541
(2001
).3.
V.
Godyak
, Soviet Radio Frequency Discharge Research
(Delphic Associates, Inc.
, Falls Church
, 1986
).4.
F.
Iza
and J. A.
Hopwood
, Plasma Science, IEEE Trans.
31
(4
), 782
(2003
).5.
F.
Iza
and J. A.
Hopwood
, Plasma Science, IEEE Trans.
32
(2
), 498
(2004
).6.
F.
Iza
and J. A.
Hopwood
, Plasma Science, IEEE Trans.
33
(2
), 306
(2005
).7.
F.
Iza
and J. A.
Hopwood
, Plasma Sources Sci. Technol.
14
(2
), 397
(2005
).8.
M. A.
Lieberman
and A. J.
Lichtenberg
, Principles of Plasma Discharges and Materials Processing
(Wiley-Interscience
, Hoboken
, 2005
).9.
Y.
Raizer
, M.
Shneider
, and N.
Yatsenko
, Radio-Frequency Capacitive Discharges
(CRC
, Boca Raton
, 1995
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.