We investigated the degradation of indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) for various channel widths under high-gate and drain bias stress. The threshold voltage of IGZO TFT with wide-channel width (W > 100 μm) was significantly shifted. This included stress-induced hump-effect in a negative direction after the stress, whereas IGZO TFT with narrow-channel width (W < 100 μm) shifted in a positive direction. This phenomenon may be attributed to the hole trapping into the back-interface region. In order to enhance the reliability of IGZO TFTs, we developed and verified that the multiple-channel device showed better bias-temperature stability (ΔVTH: −0.1 V), whereas the single-channel device exhibited a −0.4 VΔVTH shift.

1.
S.
Yang
,
C.-S.
Hwang
,
J.-I.
Lee
,
S.-M.
Yoon
,
M.-K.
Ryu
,
K.-I.
Cho
,
S.-H. K.
Park
,
S.-H.
Kim
,
C.-E.
Park
 et al.,
Appl. Phys. Lett.
98
,
103515
(
2011
).
2.
S.-I.
Kim
,
S. W.
Kim
,
C. J.
Kim
, and
J.-S.
Park
,
J. Electrochem. Soc.
158
(
2
),
H115
(
2011
).
3.
K.
Takechi
,
M.
Nakata
,
T.
Eguchi
,
H.
Yamaguchi
, and
S.
Kaneko1
,
Jpn. J. Appl. Phys.
48
,
011301
(
2009
).
4.
H.-S.
Seo
,
J.-U.
Bae
,
D.-H.
Kim
,
Y. J.
Park
,
C.-D.
Kim
,
I. B.
Kang
,
I.-J.
Chung
,
J.-H.
Choi
, and
J.-M.
Myoung
,
Electrochem. Solid-State Lett.
12
,
H348
(
2009
).
5.
J. K.
Jeong
,
Semicond. Sci. Technol.
26
,
034008
(
2011
).
6.
J.-M.
Lee
,
I.-T.
Cho
,
J.-H.
Lee
, and
H.-I.
Kwon
,
Appl. Phys. Lett.
93
,
093504
(
2008
).
7.
S.
Hashimoto
,
Y.
Uraoka
,
T.
Fuyuki
, and
Y.
Morita
,
Jpn. J. Appl. Phys.
46
,
1387
(
2007
).
8.
T.-C.
Chen
,
T.-C.
Chang
,
C.-T.
Tsai
,
T.-Y.
Hsieh
,
S.-C.
Chen
,
C.-S.
Lin
,
M.-C.
Hung
,
C.-H.
Tu
,
J.-J.
Chang
, and
P.-L.
Chen
,
Appl. Phys. Lett.
97
,
112104
(
2010
).
9.
H.
Oh
,
S.-M.
Yoon
,
M. K.
Ryu
,
C.-S.
Hwang
,
S.
Yang
, and
S.-H. K.
Park
,
Appl. Phys. Lett.
98
,
033504
(
2011
).
10.
T.-C.
Chen
,
T.-C.
Chang
,
T.-Y.
Hsieh
,
W.-S.
Lu
,
F.-Y.
Jian
,
C.-T.
Tsai
,
S.-Y.
Huang
, and
C.-S.
Lin
,
Appl. Phys. Lett.
99
,
022104
(
2011
).
11.
M.
Mativenga
,
M. H.
Choi
,
J. W.
Choi
, and
J.
Jang
,
IEEE Electron Device Lett.
32
,
170
(
2011
).
12.
K.
Watanabe
and
T.
Asano
,
Jpn. J. Appl. Phys.
48
,
03B005
(
2009
).
13.
M.
Fujii
,
H.
Yano
,
T.
Hatayama
,
Y.
Uraoak
,
T.
Fuyuki
,
J. S.
Jung
, and
J. Y.
Kwon
,
Jpn. J. Appl. Phys.
47
,
6236
(
2008
).
14.
Y.
Uraoka
,
N.
Hirai
,
H.
Yano
,
T.
Hatayama
, and
T.
Fuyuki
,
IEEE Trans. Electron Devices
51
(
1
),
28
(
2004
).
15.
J. H.
Kim
,
D. W.
Kwon
,
J. S.
Chang
,
S. W.
Kim
,
J. C.
Park
,
C. J.
Kim
, and
B.-G.
Park
,
Appl. Phys. Lett.
99
,
043502
(
2011
).
16.
M.
Mativenga
,
M.
Seok
, and
J.
Jang
,
Appl. Phys. Lett.
99
,
122107
(
2011
).
17.
W. J.
Maeng
,
J. S.
Park
,
H.-S.
Kim
,
E. S.
Kim
,
K. S.
Son
,
T. S.
Kim
,
M.
Ryu
, and
S.
Lee
,
IEEE Electron Device Lett.
32
,
1077
(
2011
).
18.
M.
Furuta
,
Y.
Kamada
,
M.
Kimura
,
T.
Hiramatsu
,
T.
Matsuda
,
H.
Furuta
,
C.
Li
,
S.
Fujita
, and
T.
Hirao
,
IEEE Electron Device Lett.
31
(
11
),
1257
(
2010
).
19.
K.
Kunihiro
,
K.
Kasahara
,
Y.
Takahashi
, and
Y.
Ohno
,
IEEE Electron Device Lett.
20
(
12
),
608
(
1999
).
20.
N.
Dyakonova
,
A.
Dickens
,
M. S.
Shur
,
R.
Gaska
, and
J. W.
Yang
,
Appl. Phys. Lett.
72
,
2562
(
1998
).
You do not currently have access to this content.