Using a simple micro-imprinting process on flexible substrates, we demonstrate fabrication of self-aligned short channel organic thin film transistors (OTFTs) with significantly reduced parasitic capacitance. The surface topology resulting from the imprinted prism-like structures enables accurate alignment of both the gate and source-drain electrodes. The parasitic overlap capacitance was reduced by 80%, which enables twice higher transition frequency (fT = 10.1 kHz) compared with conventional top-contact OTFT devices. The prism-OTFTs were applied to both p-type (pentacene) and n-type (C60) organic semiconductors to implement low voltage complementary inverters.

1.
Z.
Bao
and
J.
Locklin
,
Organic Field-Effect Transistors
(
CRC Press
,
Boca Raton, FL
,
2007
).
2.
E.
Cantatore
,
T. C. T.
Geuns
,
G. H.
Gelinck
,
E.
van Veenendaal
,
A. F. A.
Gruijthuijsen
,
L.
Schrijnemakers
,
S.
Drews
, and
D. M.
de Leeuw
,
IEEE J. Solid State Circuits
42
,
84
(
2007
).
3.
T.
Someya
,
T.
Sekitani
,
S.
Iba
,
Y.
Kato
,
H.
Kawaguchi
, and
T.
Sakurai
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
9966
(
2004
).
4.
T.
Sekitani
,
U.
Zschieschang
,
H.
Klauk
, and
T.
Someya
,
Nat. Mater.
9
,
1015
(
2010
).
5.
D. J.
Gundlach
,
T. N.
Jackson
,
D. G.
Schlom
, and
S. F.
Nelson
,
Appl. Phys. Lett.
74
,
3302
(
1999
).
6.
M.
Halik
,
H.
Klauk
,
U.
Zschieschang
,
T.
Kriem
,
G.
Schmid
,
W.
Radlik
, and
K.
Wussow
,
Appl. Phys. Lett.
81
,
289
(
2002
).
7.
M.
Nurul Islam
and
B.
Mazhari
,
Solid-State Electron.
53
,
1067
(
2009
).
8.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
9.
I.
Kymissis
,
C. D.
Dimitrakopoulos
, and
S.
Purushothaman
,
IEEE Trans. Electron Devices
48
,
1060
(
2001
).
10.
M.
Uno
,
K.
Nakayama
,
J.
Soeda
,
Y.
Hirose
,
K.
Miwa
,
T.
Uemura
,
A.
Nakao
,
K.
Takimiya
, and
J.
Takeya
,
Adv. Mater.
23
,
3047
(
2011
).
11.
T.
Takano
,
H.
Yamauchi
,
M.
Iizuka
,
M.
Nakamura
, and
K.
Kudo
,
Appl. Phys. Express
2
,
071501
(
2009
).
12.
M.
Uno
,
I.
Doi
,
K.
Takimiya
, and
J.
Takeya
,
Appl. Phys. Lett.
94
,
103307
(
2009
).
13.
Y. Y.
Noh
,
N.
Zhao
,
M.
Caironi
, and
H.
Sirringhaus
,
Nat. Nanotechnol.
2
,
784
(
2007
).
14.
T.
Hyodo
,
F.
Morita
,
S.
Naka
,
H.
Okada
, and
H.
Onnagawa
,
Jpn. J. Appl. Phys.
43
,
2323
(
2004
).
15.
M.
Ando
,
M.
Kawasaki
,
S.
Imazeki
,
H.
Sasaki
, and
T.
Kamata
,
Appl. Phys. Lett.
85
,
1849
(
2004
).
16.
U.
Palfinger
,
C.
Auner
,
H.
Gold
,
A.
Haase
,
J.
Kraxner
,
T.
Haber
,
M.
Sezen
,
W.
Grogger
,
G.
Domann
,
G.
Jakopic
,
J. R.
Krenn
, and
B.
Stadlober
,
Adv. Mater.
22
,
5115
(
2010
).
17.
N.
Stutzmann
,
R. H.
Friend
, and
H.
Sirringhaus
,
Science
299
,
1881
(
2003
).
18.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Science
272
,
85
(
1996
).
19.
K.-E.
Elers
,
T.
Blomberg
,
M.
Peussa
,
B.
Aitchison
,
S.
Haukka
, and
S.
Marcus
,
Chem. Vap. Deposition
12
,
13
(
2006
).
20.
Y.
Chung
,
B.
Murmann
,
S.
Selvarasah
,
M. R.
Dokmeci
, and
Z.
Bao
,
Appl. Phys. Lett.
96
,
133306
(
2010
).
21.
F. D.
Fleischli
,
K.
Sidler
,
M.
Schaer
,
V.
Savu
,
J.
Brugger
, and
L.
Zuppiroli
,
Org. Electron.
12
,
336
(
2011
).
22.
F.
Ante
,
F.
Letzkus
,
J.
Butschke
,
U.
Zschieschang
,
K.
Kern
,
J. N.
Burghartz
, and
H.
Klauk
,
IEDM Tech. Dig.
2010
,
516
.
23.
T.
Minari
,
T.
Nemoto
, and
S.
Isoda
,
J. Appl. Phys.
99
,
034506
(
2006
).
24.
J. D.
Plummer
,
M. D.
Deal
, and
P. B.
Griffin
,
Silicon VLSI Technology: Fundamentals, Practice and Modeling
(
Prentice Hall
,
Upper Saddle River, NJ
,
2000
).
25.
J. R.
Hauser
,
IEEE Trans. Educ.
36
,
363
(
1993
).
You do not currently have access to this content.