We have observed Ru hyperoxides (RuO3 and RuO4) in Ru–O2–Ar plasmas using mass-energy analysis. Based on ab initio adsorption data, a nanorod formation model is presented. RuO3 exhibits the strongest adsorption on RuO2(001). Adatoms impinging on these RuO3 islands are likely to contribute towards three-dimensional growth due to Ehrlich-Schwoebel barriers. We propose that RuO3 islands act as nucleation sites for the nanorod formation. Our model is consistent with available experimental data.

1.
Y.
Xia
,
P.
Yang
,
Y.
Sun
,
Y.
Wu
,
B.
Mayers
,
B.
Gates
,
Y.
Yin
,
F.
Kim
, and
H.
Yan
,
Adv. Mater.
15
,
353
(
2003
).
2.
J. V.
Ryan
,
A. D.
Berry
,
M. L.
Anderson
,
J. W.
Long
,
R. M.
Stroud
,
V. M.
Cepak
,
V. M.
Browning
,
D. R.
Rolison
, and
C. I.
Merzbacher
,
Nature
406
,
169
(
2000
).
3.
C.-S.
Hsieh
,
D.-S.
Tsai
,
R.-S.
Chen
, and
Y.-S.
Huang
,
Appl. Phys. Lett.
85
,
3860
(
2004
).
4.
Y.-T.
Lin
,
C.-Y.
Chen
,
C.-P.
Hsiung
,
K.-W.
Cheng
, and
J.-Y.
Gan
,
Appl. Phys. Lett.
89
,
063123
(
2006
).
5.
Y.-L.
Chueh
,
C.-H.
Hseih
,
M.-T.
Chang
,
L.-J.
Chou
,
C. S.
Lao
,
J. H.
Song
,
J.-Y.
Gan
, and
Z. L.
Wang
,
Adv. Mater.
19
,
143
(
2007
).
6.
D.
Music
,
F. H.-U.
Basse
,
R.
Haβdorf
, and
J. M.
Schneider
,
J. Appl. Phys.
108
,
013707
(
2010
).
7.
M.
Hiratani
,
Y.
Matsui
,
K.
Imagawa
, and
S.
Kimura
,
Thin Solid Films
366
,
102
(
2000
).
8.
M. W.
Cross
,
W. J.
Varhue
,
D. L.
Hitt
, and
E.
Adams
,
Nanotechnology
19
,
045611
(
2008
).
9.
D.
Ferizović
,
L. K.
Hussey
,
Y.-S.
Huang
, and
M.
Muñoz
,
Appl. Phys. Lett.
94
,
131913
(
2009
).
10.
Y.
Kaga
,
Y.
Abe
,
H.
Yanagisawa
, and
K.
Sasaki
,
Jpn. J. Appl. Phys.
37
,
3457
(
1998
).
11.
M. H.
Kim
,
J. M.
Baik
,
S. J. L. H.-Y.
Shin
,
J.
Lee
,
S.
Yoon
,
G. D.
Stucky
,
M.
Moskovits
, and
A. M.
Wodtke
,
Appl. Phys. Lett.
96
,
213108
(
2010
).
12.
C. C.
Hsu
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
24
,
1
(
2006
).
13.
Y.
Abe
,
Y.
Kaga
,
M.
Kawamura
, and
K.
Sasaki
,
J. Vac. Sci. Technol. B
18
,
1348
(
2000
).
14.
D.
Benzeggouta
,
M. C.
Hugon
, and
J.
Bretagne
,
Plasma Sources Sci. Technol.
18
,
045026
(
2009
).
15.
I.
Petrov
,
A.
Myers
,
J. E.
Greene
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
12
,
2846
(
1994
).
16.
S.
Mráz
and
J. M.
Schneider
,
Appl. Phys. Lett.
89
,
051502
(
2006
).
17.
S.
Mráz
and
J. M.
Schneider
,
J. Appl. Phys.
100
,
023503
(
2006
).
18.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
20.
T.
Ozaki
,
Phys. Rev. B
67
,
155108
(
2003
).
21.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
22.
P. E.
Blöchl
,
Phys. Rev. B
41
,
5414
(
1990
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
24.
D.
Music
,
F. H.-U.
Basse
, and
J. M.
Schneider
,
Cryst. Growth Des.
10
,
4531
(
2010
).
25.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
26.
S.-C.
Li
,
Y.
Han
,
J.-F.
Jia
,
Q.-K.
Xue
, and
F.
Liu
,
Phys. Rev. B
74
,
195428
(
2006
).
27.
S. K.
Xiang
and
H.
Huang
,
Appl. Phys. Lett.
92
,
101923
(
2008
).
You do not currently have access to this content.