In-depth understanding of the retarded oxidation phenomenon observed during the oxidation of silicon nanostructures is proposed. The wet thermal oxidation of various silicon nanostructures such as nanobeams, concave/convex nanorings, and nanowires exhibits an extremely different and complex behavior. Such effects have been investigated by the modeling of the mechanical stress generated during the oxidation process explaining the retarded regime. The model describes the oxidation kinetics of silicon nanowires while predicting reasonable and physical stress levels at the silicon/silicon dioxide interface by correctly taking into account the relaxation effects in silicon oxide through plastic flow.

1.
R.
Okada
and
S.
Iijima
,
Appl. Phys. Lett.
58
,
1662
(
1991
).
2.
H. I.
Liu
,
D. K.
Biegelsen
,
F. A.
Ponce
,
N. M.
Johnson
, and
R. F. W.
Pease
,
Appl. Phys. Lett.
64
,
1383
(
1994
).
3.
H.
Coffin
,
C.
Bonafos
,
S.
Schamm
,
N.
Cherkashin
,
G. B.
Assayag
,
A.
Claverie
,
M.
Respaud
,
P.
Dimitrakis
, and
P.
Normand
,
J. Appl. Phys.
99
,
044302
(
2006
).
4.
X.
Tang
,
C.
Krzeminski
,
A. L.
des Etangs-Levallois
,
Z.
Chen
,
E.
Dubois
,
E.
Kasper
,
A.
Karmous
,
N.
Reckinger
,
D.
Flandre
,
L. A.
Francis
,
J.-P.
Colinge
, and
J.-P.
Raskin
,
Nano Lett.
11
,
4520
(
2011
).
5.
D.
Shir
,
B. Z.
Liu
,
A. M.
Mohammad
,
K. K.
Lew
, and
S. E.
Mohney
,
J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct.
24
,
1333
(
2006
).
6.
H.
Heidemeyer
,
C.
Single
,
F.
Zhou
,
F. E.
Prins
,
D. P.
Kern
, and
E.
Plies
,
J. Appl. Phys.
87
,
4580
(
2000
).
7.
C. C.
Büttner
and
M.
Zacharias
,
Appl. Phys. Lett.
89
,
263106
(
2006
).
8.
X.-L.
Han
,
G.
Larrieu
, and
E.
Dubois
,
J. Nanosci. Nanotechnol.
10
,
7423
(
2010
).
9.
X.-L.
Han
,
G.
Larrieu
,
P.-F.
Fazzini
, and
E.
Dubois
,
Microelectron. Eng.
88
,
2622
(
2011
).
10.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
11.
D.-B.
Kao
,
J.
McVittie
,
W.
Nix
, and
K.
Saraswat
,
IEEE Trans. Electron Devices
35
,
25
(
1988
).
12.
P.
Sutardja
and
W.
Oldham
,
IEEE Trans. Electron Devices
36
,
2415
(
1989
).
13.
V.
Senez
,
D.
Collard
,
B.
Baccus
, and
J.
Lebailly
,
J. Appl. Phys.
76
,
3285
(
1994
).
14.
C. S.
Rafferty
,
L.
Borucki
, and
R. W.
Dutton
,
Appl. Phys. Lett.
54
,
1516
(
1989
).
15.
M. L.
Falk
and
J. S.
Langer
,
Annu. Rev.
2
,
353
(
2011
).
16.
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
).
17.
G.
Hetherington
,
K. H.
Jack
, and
J. C.
Kennedy
,
Phys. Chem. Glasses
5
,
130
(
1964
).
18.
C. S.
Rafferty
and
R. W.
Dutton
,
Appl. Phys. Lett.
54
,
1815
(
1989
).
19.
G.
Stan
,
S.
Krylyuk
,
A. V.
Davydov
, and
R. F.
Cook
,
Nano Lett.
10
,
2031
(
2010
).
You do not currently have access to this content.