We experimentally investigated surface roughness-augmented wettability on critical heat flux (CHF) during pool boiling with horizontally oriented surfaces. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a maximum CHF of ∼208 W/cm2 was achieved with a surface roughness of ∼6. An analytical force-balance model was extended to explain the CHF enhancement. The excellent agreement found between the model and experimental data supports the idea that roughness-amplified capillary forces are responsible for the CHF enhancement on structured surfaces. The insights gained from this work suggest design guidelines for new surface technologies with high heat removal capability.
REFERENCES
1.
D. C.
Price
, IEEE Trans. Compon. Packag. Technol.
26
(1
), 26
(2003
).2.
T. W.
Kenny
, K. E.
Goodson
, J. G.
Santiago
, E. N.
Wang
, J.-M.
Koo
, L.
Jiang
, E.
Pop
, S.
Sinha
, L.
Zhang
, D.
Fogg
, S.
Yao
, R.
Flynn
, C.-H.
Chang
, and C. H.
Hidrovo
, Int. J. High Speed Electron. Syst.
16
(1
), 301
(2006
).3.
J. R.
Thome
, Heat Transfer Eng.
27
(9
), 1
(2006
).4.
E.
Pop
, Nano Res.
3
, 147
(2010
).5.
S. G.
Kandlikar
, J. Heat Transfer
123
, 1071
(2001
).6.
E.
Forrest
, E.
Williamson
, J.
Buongiorno
, L.-W.
Huc
, M.
Rubner
, and R.
Cohen
, Int. J. Heat Mass Transfer
53
, 58
(2010
).7.
C. H.
Li
and G. P.
Peterson
, Front. Heat Transfer
1
, 023007
(2010
).8.
N.
Zuber
, AEC Report No. AECU-4439, 1959
.9.
V.K.
Dhir
, Annu. Rev. Fluid Mech.
30
, 365
(1998
).10.
R.
Chen
, M.-C.
Lu
, V.
Srinivasan
, Z.
Wang
, H. H.
Cho
, and A.
Majumdar
, Nano Lett.
9
(2
), 548
(2009
).11.
S.
Kim
, H. D.
Kim
, H.
Kim
, H. S.
Ahn
, H.
Jo
, J.
Kim
, and M. H.
Kim
, Exp. Therm. Fluid Sci.
34
(4
), 487
(2010
).12.
H. S.
Ahn
, H. J.
Jo
, S. H.
Kang
, and M. H.
Kim
, Appl. Phys. Lett.
98
, 071908
(2011
).13.
M.-C.
Lu
, R.
Chen
, V.
Srinivasan
, V. P.
Carey
, and A.
Majumdar
, Int. J. Heat Mass Transfer
54
(25–26
), 5359
–5367
(2011
).14.
C.
Li
, Z.
Wang
, P.-I.
Wang
, Y.
Peles
, N.
Koratkar
, and G. P.
Peterson
, Small
4
(8
), 1084
(2008
).15.
T. G.
Theofanous
, J. P.
Tu
, A. T.
Dinh
, and T. N.
Dinh
, Exp. Therm. Fluid Sci.
26
(6–7
), 775
(2002
).16.
See supplementary material at http://dx.doi.org/10.1063/1.4724190 for the experimental setup, the measurement uncertainty, the model derivation and discussion, contact angle and surface tension estimation, and Fig. S4.
17.
R.
Xiao
, R.
Enright
, and E. N.
Wang
, Langmuir
26
(19
), 15070
(2010
).18.
C.
Gerardi
, J.
Buongiorno
, L.-W.
Hu
, and T.
McKrell
, Nanoscale Res. Lett.
6
, 232
(2011
).19.
S. G.
Liter
and M.
Kaviany
, Int. J. Heat Mass Transfer
44
(22
), 4287
(2001
).20.
G. P.
Narayan
, K. B.
Anoop
, and S. K.
Das
, J. Appl. Phys.
102
, 074317
(2007
).21.
S. J.
Kim
, I. C.
Bang
, J.
Buongiorno
, and L. W.
Hu
, Int. J. Heat Mass Transfer
50
(19–20
), 4105
(2007
).22.
T. G.
Theofanous
and T.-N.
Dinh
, Multiphase Sci Technol.
18
(1
), 1
(2006
).23.
T. G.
Theofanous
, T. N.
Dinh
, J. P.
Tu
, and A. T.
Dinh
, Exp. Therm. Fluid Sci.
26
(6–7
), 793
(2002
).24.
R. N.
Wenzel
, Ind. Eng. Chem.
28
(8
), 988
(1936
).25.
26.
W. M.
Rohsenow
, J. P.
Hartnett
, and E. N.
Ganic
, Handbook of heat transfer fundamentals
, 2 ed. (McGraw-Hill
, New York
, 1985
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.