We discuss a possible mechanism of the current instability in multi-gated structures with periodic modulation of the electron density in the device channel. In such structures, the plasma wave velocity is periodically modulated as well, and the stationary electric current may become unstable with respect to generation of the plasma oscillations. In the simplest model of periodically alternating stripes of the electron density with plasma wave velocities sa and sb, respectively (sa < sb), the instability occurs when the electron drift velocity approaches sa. For typical parameters, the plasma oscillation frequency can be tuned to be in the terahertz range of frequencies.

1.
M. I.
Dyakonov
and
M. S.
Shur
,
Phys. Rev. Lett.
71
,
2465
(
1993
).
2.
M. I.
Dyakonov
and
M. S.
Shur
,
IEEE Trans. Electron Devices
43
,
380
(
1996
).
3.
W. J.
Stillman
and
M. S.
Shur
,
J. Nanoelectron. Optoelectron.
2
,
209
(
2007
).
4.
M.
Shur
, “
Plasma wave terahertz electronics
,”
Electron. Lett.
46
,
S18
S21
(
2010
).
5.
N.
Dyakonova
,
A.
El Fatimy
,
J.
Łusakowski
,
W.
Knap
,
M. I.
Dyakonov
,
M.-A.
Poisson
,
E.
Morvan
,
S.
Bollaert
,
A.
Shchepetov
,
Y.
Roelens
,
Ch.
Gaquiere
,
D.
Theron
, and
A.
Cappy
,
Appl. Phys. Lett.
88
,
141906
(
2006
).
6.
T.
Otsuji
,
T.
Komori
,
T.
Watanabe
, and
T.
Suemitsu
, “
Plasmonic nanodevices for terahertz sensing and spectroscopy
,”
SPIE Newsroom
(15 February
2010
).
7.
X. G.
Peralta
,
S. J.
Allen
,
M. C.
Wanke
,
N. E.
Harff
,
J. A.
Simmons
,
M. P.
Lilly
,
J. L.
Reno
,
P. J.
Burke
, and
J. P.
Eisenstein
,
Appl. Phys. Lett.
81
,
1627
(
2002
).
8.
E. A.
Shaner
,
M.
Lee
,
M. C.
Wanke
,
A. D.
Grine
,
J. L.
Reno
, and
S. J.
Allen
,
Appl. Phys. Lett.
87
,
193507
(
2005
).
9.
E. A.
Shaner
,
A. D.
Grine
,
M. C.
Wanke
,
M.
Lee
,
J. L.
Reno
, and
S. J.
Allen
,
IEEE Photon. Technol. Lett.
18
,
1925
(
2006
).
10.
E. A.
Shaner
,
M. C.
Wanke
,
A. D.
Grine
,
S. K.
Lyo
,
J. L.
Reno
, and
S. J.
Allen
,
Appl. Phys. Lett.
90
,
181127
(
2007
).
11.
N.
Pala
,
D.
Veksler
,
A.
Muravjov
,
W.
Stillman
,
R.
Gaska
, and
M. S.
Shur
, in
Abstracts of IEEE Sensors Conference, Atlanta, GA, October 2007
(IEEE,
2007
), pp.
291
292
.
12.
A. V.
Muravjov
,
D. B.
Veksler
,
V. V.
Popov
,
O. V.
Polischuk
,
N.
Pala
,
X.
Hu
,
R.
Gaska
,
H.
Saxena
,
R. E.
Peale
, and
M. S.
Shur
,
Appl. Phys. Lett.
96
,
042105
(
2010
).
13.
G. C.
Dyer
,
G. R.
Aizin
,
J. L.
Reno
,
E. A.
Shaner
, and
S. J.
Allen
,
IEEE J. Sel. Top. Quantum Electron.
17
,
85
(
2011
).
14.
G. C.
Dyer
,
S.
Preu
,
G. R.
Aizin
,
J.
Mikalopas
,
A. D.
Grine
,
J. L.
Reno
,
J. M.
Hensley
,
N. Q.
Vinh
,
A. C.
Gossard
,
M. S.
Sherwin
,
S. J.
Allen
, and
E. A.
Shaner
,
Appl. Phys. Lett.
100
,
083506
(
2012
).
15.
T. A.
Elkhatib
,
V. Y.
Kachorovskii
,
W. J.
Stillman
,
D. B.
Veksler
,
K. N.
Salama
X.-C.
Zhang
, and
M. S.
Shur
,
IEEE Trans. Microwave Theory Tech.
58
,
331
(
2010
).
16.
V. V.
Popov
,
D. M.
Ermolaev
,
K. V.
Maremyanin
,
N. A.
Maleev
,
V. E.
Zemlyakov
,
V. I.
Gavrilenko
, and
S.
Yu. Shapoval
,
Appl. Phys. Lett.
98
,
153504
(
2011
).
17.
G. R.
Aizin
,
V. V.
Popov
, and
O. V.
Polischuk
,
Appl. Phys. Lett.
89
,
143512
(
2006
).
18.
V. V.
Popov
,
G. M.
Tsymbalov
,
D. V.
Fateev
, and
M. S.
Shur
,
Appl. Phys. Lett.
89
,
123504
(
2006
).
19.
G. R.
Aizin
,
D. V.
Fateev
,
G. M.
Tsymbalov
, and
V. V.
Popov
,
Appl. Phys. Lett.
91
,
163507
(
2007
).
20.
T. V.
Teperik
,
F. J.
García de Abajo
,
V. V.
Popov
, and
M. S.
Shur
,
Appl. Phys. Lett.
90
,
251910
(
2007
).
21.
V. V.
Popov
,
D. V.
Fateev
,
T.
Otsuji
,
Y. M.
Meziani
,
D.
Coquillat
, and
W.
Knap
,
Appl. Phys. Lett.
99
,
243504
(
2011
).
22.
Y. M.
Meziani
,
H.
Handa
,
W.
Knap
,
T.
Otsuji
,
E.
Sano
,
V. V.
Popov
,
G. M.
Tsymbalov
,
D.
Coquillat
, and
F.
Teppe
,
Appl. Phys. Lett.
92
,
201108
(
2008
).
23.
T.
Otsuji
,
Y. M.
Meziani
,
T.
Nishimura
,
T.
Suemitsu
,
W.
Knap
,
E.
Sano
,
T.
Asano
, and
V. V.
Popov
,
J. Phys.: Condens. Matter
20
,
384206
(
2008
).
24.
M. I.
Dyakonov
and
M. S.
Shur
,
Phys. Rev. B
51
,
14341
(
1995
).
25.

Equation (9) becomes invalid in vicinity of points πN/Tb where γ is small and the conditions γT1,γT±1 are not fulfilled. One can show that near these points γ is proportional to |w – πN/Tb| while Eq. (9) predicts γ ∝ (w – πN/Tb)2.

26.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed., Vol. 6: Course of Theoretical Physics (
Butterworth-Heinemann
,
1987
).
27.

At the first glance, a more simple realization of the device is possible. One can deplete the channel in regions a in such a way that u = Va = sa. In this case, the drift velocities in the sections b will be different and correspond to Va < sa in the sections with odd numbers (counted from the source) and Va > sa in the even sections. One can show, however, that the condition u < u* needed for instability is not satisfied for such a device.

28.

Strictly speaking, the wave vector of a plasma wave (proportional to Ω/(sc – Vc)) diverges at the points, corresponding to Vc = sc = u. However, this singularity is cured by accounting for diffusion or finite viscosity, neglected in our theory. Here, for simplicity, we assume that the diffusion length D/Ω (or analogous length related to finite viscosity) is larger than Lc. This assumption (together with assumption LcLa,Lb) guarantees that regions c do not affect the BC between a and b.

29.
A. P.
Dmitriev
,
A. S.
Furman
, and
V. Yu.
Kachorovskii
,
Phys. Rev. B
54
,
14020
(
1996
).
30.
A. P.
Dmitriev
,
A. S.
Furman
,
V. Yu.
Kachorovskii
,
G. G.
Samsonidze
, and
Ge. G.
Samsonidze
,
Phys. Rev. B
55
,
10319
(
1997
).
You do not currently have access to this content.