We report the fabrication and characterization of 80GeS2·20Ga2S3:0.5Tm2S3 chalcogenide glass-ceramics. A careful thermal process has led to the formation of ∼50 nm Ga2S3 nanocrystals. By monitoring the 3H53F4 Tm3+ transition, an almost fivefold increase of in the intensity and ∼76 μs prolongation in the lifetime of mid-infrared fluorescence at 3.8 μm have been observed after crystallization. Element mapping evidenced that enhancement in the mid-infrared emission intensity was related to the formation of Ge-rich region in the glass-ceramics, consistent with spectroscopic results from glasses with different levels of GeS2 content and β-GeS2 precipitation.

1.
B.
Fan
,
C.
Point
,
J.-L.
Adam
,
X.
Zhang
,
X.
Fan
, and
H.
Ma
,
J. Appl. Phys.
110
(
11
),
113107
113108
(
2011
).
2.
A.
Mori
,
Y.
Ohishi
,
T.
Kanamori
, and
S.
Sudo
,
Appl. Phys. Lett.
70
(
10
),
1230
1232
(
1997
).
3.
T.
Schweizer
,
D. W.
Hewak
,
D. M.
Payne
,
T.
Jensen
, and
G.
Huber
,
Electron. Lett
32
(
7
),
666
667
(
1996
).
4.
H.
Tao
,
Z.
Yang
, and
P.
Lucas
,
Opt. Express
17
(
20
),
18165
18170
(
2009
).
5.
J.
Heo
,
J. N.
Jang
, and
Y. S.
Kim
,
Proc. SPIE
1817
,
134
140
(
1992
).
6.
J. S.
Sanghera
,
L.
Brandon Shaw
, and
I. D.
Aggarwal
,
IEEE J. Sel. Top. Quantum Electron.
15
(
1
),
114
119
(
2009
).
7.
V.
Moizan
,
V.
Nazabal
,
J.
Troles
,
P.
Houizot
,
J.-L.
Adam
,
J.-L.
Doualan
,
R.
Moncorg
,
F.
Smektala
,
G.
Gadret
,
S.
Pitois
, and
G.
Canat
,
Opt. Mater.
31
(
1
),
39
46
(
2008
).
8.
A. B.
Seddon
,
Z.
Tang
,
D.
Furniss
,
S.
Sujecki
, and
T. M.
Benson
,
Opt. Express
18
(
25
),
26704
26719
(
2010
).
9.
T.
Schweizer
,
D. W.
Hewak
,
B. N.
Samson
, and
D. N.
Payne
,
Opt. Lett.
21
(
19
),
1594
1596
(
1996
).
10.
L.
Shaw
,
B.
Harbison
,
B.
Cole
,
J.
Sanghera
, and
I.
Aggarwal
,
Opt. Express
1
(
4
),
87
96
(
1997
).
11.
L. B.
Shaw
,
B. J.
Cole
,
J. S.
Sanghera
,
I. D.
Aggarwal
,
F. H.
Kung
,
S. S.
Bayya
,
R.
Mossadegh
,
P. A.
Thielen
,
J. R.
Kircher
, and
J. R. L.
Murrer
, “
Development of IR-emitting infrared fibers at the Naval Research Laboratory
,”
Proc. SPIE
4366
,
90
95
(
2001
).
12.
R. S.
Quimby
,
L. B.
Shaw
,
J. S.
Sanghera
, and
I. D.
Aggarwal
,
IEEE Photon. Technol. Lett.
20
(
2
),
123
125
(
2008
).
13.
Q. Y.
Zhang
and
X. Y.
Huang
,
Prog. Mater Sci.
55
(
5
),
353
427
(
2010
).
14.
D.
Chen
,
Y.
Yu
,
P.
Huang
,
F.
Weng
,
H.
Lin
, and
Y.
Wang
,
Appl. Phys. Lett.
94
,
041909
(
2009
).
15.
S. N. B.
Bhaktha
,
F.
Beclin
,
M.
Bouazaoui
,
B.
Capoen
,
A.
Chiasera
,
M.
Ferrari
,
C.
Kinowski
,
G. C.
Righini
,
O.
Robbe
, and
S.
Turrell
,
Appl. Phys. Lett.
93
,
211904
(
2008
).
16.
R.
Balda
,
S.
García-Revilla
,
J.
Fernández
,
V.
Seznec
,
V.
Nazabal
,
X. H.
Zhang
,
J. L.
Adam
,
M.
Allix
, and
G.
Matzen
,
Opt. Mater.
31
(
5
),
760
764
(
2009
).
17.
E.
Guillevic
,
M.
Allix
,
X.
Zhang
,
J.-L.
Adam
,
G.
Matzen
, and
X.
Fan
,
Mater. Res. Bull.
45
(
4
),
448
455
(
2009
).
18.
V.
Seznec
,
H. L.
Ma
,
X. H.
Zhang
,
V.
Nazabal
,
J.-L.
Adam
,
X. S.
Qiao
, and
X. P.
Fan
,
Opt. Mater.
29
(
4
),
371
376
(
2006
).
19.
T.
Schweizer
,
B. N.
Samson
,
J. R.
Hector
,
W. S.
Brocklesby
,
D. W.
Hewak
, and
D. N.
Payne
,
J. Opt. Soc. Am. B
16
(
2
),
308
316
(
1999
).
20.
C.
Lin
,
L.
Calvez
,
M.
Rozé
,
H.
Tao
,
X.
Zhang
, and
X.
Zhao
,
Appl. Phys. A
97
,
713
720
(
2009
).
21.
C.
Lin
,
L.
Calvez
,
H.
Tao
,
M.
Allix
,
A.
Moréac
,
X.
Zhang
, and
X.
Zhao
,
J. Solid. State Chem.
184
(
3
),
584
588
(
2011
).
22.
H.
Lin
,
D.
Chen
,
Y.
Yu
,
A.
Yang
, and
Y.
Wang
,
Opt. Lett.
36
(
6
),
876
878
(
2011
).
23.
M. J.
Weber
,
Phys. Rev.
157
(
2
),
262
272
(
1967
).
24.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
Springer
,
2011
).
25.
C.
Liu
and
J.
Heo
, “
Electron Energy Loss Spectroscopy Analysis on the Preferential Incorporation of Er3+ ions into Fluoride Nanocrystals in Oxyfluoride Glass-Ceramics
,”
J. Am. Ceram. Soc.
(in press).
26.
C.
Lin
,
L.
Calvez
,
L.
Ying
,
F.
Chen
,
B.
a. Song
,
X.
Shen
,
S.
Dai
, and
X.
Zhang
,
Appl. Phys. A
104
(
2
),
615
620
(
2011
).
You do not currently have access to this content.