We report on an experimental demonstration of graphene-metal ohmic contacts with contact resistance below 100 Ω µm. These have been fabricated on graphene wafers, both with and without hydrogen intercalation, and measured using the transmission line method. Specific contact resistivities of 3 × 10−7 to 1.2 × 10−8 Ω cm2 have been obtained. The ultra-low contact resistance yielded short-channel (source-drain distance of 0.45 µm) HfO2/graphene field effect transistors (FETs) with a low on-resistance (Ron) of 550 Ω µm and a high current density of 1.7 A/mm at a source-drain voltage of 1 V. These values represent state-of-the-art (SOA) performance in graphene-metal contacts and graphene FETs. This ohmic contact resistance is comparable to that of SOA high-speed III–V high electron mobility transistors.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
2.
J. S.
Moon
,
D.
Curtis
,
M.
Hu
,
D.
Wong
,
C.
McGuire
,
P. M.
Campbell
,
G.
Jernigan
,
J.
Tedesco
,
B.
VanMil
,
R.
Myers-Ward
,
C.
Eddy
, Jr.
, and
D. K.
Gaskill
,
IEEE Electron Device Lett.
30
,
650
(
2009
).
3.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J.-S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H. R.
Kim
,
Y. I.
Song
,
Y.-J.
Kim
,
K. S.
Kim
,
B.
Ozyilmaz
,
J.-H.
Ahn
,
B. H.
Hong
, and
S.
Iijima
,
Nat. Nanotechnol.
5
,
574
(
2010
).
4.
J. S.
Moon
,
D.
Curtis
,
S.
Bui
,
T.
Marshall
,
D.
Wheeler
,
I.
Valles
,
S.
Kim
,
E.
Wang
,
X.
Weng
, and
M.
Fanton
,
IEEE Electron Device Lett.
31
,
1193
(
2010
).
5.
J. S.
Moon
and
D. K.
Gaskill
,
IEEE Trans. Microwave Theory Tech.
59
,
2702
(
2011
).
6.
J. S.
Moon
,
D.
Curtis
,
S.
Bui
,
M.
Hu
,
D. K.
Gaskill
,
J. L.
Tedesco
,
P.
Asbeck
,
G. G.
Jernigan
,
B.
VanMil
,
R.
Myers-Ward
,
C.
Eddy
, Jr.
, and
P. M.
Campbell
,
IEEE Electron Device Lett.
31
,
260
(
2010
).
7.
A.
Venugopal
,
L.
Colombo
, and
E. M.
Vogel
,
Appl. Phys. Lett.
96
,
013512
(
2010
).
8.
J. A.
Robinson
,
M.
LaBella
,
M.
Zhu
,
M.
Hollander
,
R.
Kasarda
,
Z.
Hughes
,
K.
Trumbull
,
R.
Cavalero
, and
D.
Snyder
,
Appl. Phys. Lett.
98
,
53103
(
2011
).
9.
B.-C.
Huang
,
M.
Zhang
,
Y.
Wang
, and
J.
Woo
,
Appl. Phys. Lett.
99
,
032107
(
2011
).
10.
A.
Hsu
,
H.
Wang
,
K. K.
Kim
,
J.
Kong
, and
T.
Palacios
,
IEEE Electron Device Lett.
32
,
1008
(
2011
).
11.
F.
Xia
,
V.
Perebeinos
,
Y.-M.
Lin
,
Y.
Wu
, and
P.
Avouris
,
Nat. Nanotechnol.
6
,
179
(
2011
).
12.
B. Y.
Ma
,
J.
Bergman
,
P.
Chen
,
J. B.
Hacker
,
G.
Dullivan
,
G.
Nagy
, and
B.
Brar
,
IEEE Trans. Microwave Theory Tech.
54
,
4448
(
2006
).
13.
R.
Lai
,
M.
Barsky
,
R.
Grundbacher
,
P. H.
Liu
,
T. P.
Chin
,
M.
Nichimoto
,
R.
Elmajarian
,
R.
Rodriguez
,
L.
Tran
,
A.
Gutierrez
,
A.
Oki
, and
D.
Streit
,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
609
611
.
14.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Tech. Dig. – Int. Electron Devices Meet.
2009
,
565
568
.
15.
D. K.
Gaskill
,
G.
Jernigan
,
P.
Campbell
,
J. L.
Tedesco
, and
J. S.
Moon
,
ECS Trans.
19
,
117
(
2009
).
16.
C.
Riedl
,
C.
Coletti
,
T.
Iwasaki
,
A. A.
Zakharov
, and
U.
Starke
,
Phys. Rev. Lett.
103
,
246804
(
2009
).
17.
P. A.
Khomyakov
,
G.
Giovannetti
,
P. C.
Rusu
,
G.
Brocks
,
J.
van den Brink
, and
P. J.
Kelly
,
Phys. Rev. B
79
,
195425
(
2009
).
You do not currently have access to this content.