The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nb dopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.
REFERENCES
1.
P. W.
Peacock
and J.
Robertson
, Appl. Phys. Lett.
83
, 5497
(2003
).2.
V.
Thavasi
, V.
Renugopalakrishnan
, R.
Jose
, and S.
Ramakrishna
, Mater. Sci. Eng. R
63
, 81
(2009
).3.
J.
Javier
and G.
Philippe
, Nature
422
, 506
(2003
).4.
B. H.
Lu
, S. Y.
Dai
, Z. H.
Chen
, L.
Yan
, Y. L.
Zhou
, and G. Z.
Yang
, Chin. Sci. Bull.
48
, 1328
(2003
).5.
M.
Kubo
, Y.
Oumi
, R.
Miura
, A.
Stirling
, and A.
Miyamoto
, Phys. Rev. B
56
, 13535
(1997
).6.
Y.
Watanebe
, J. G.
Bednorz
, A.
Bietsch
, C.
Gerber
, D.
Widmer
, A.
Beck
, and S. J.
Wind
, Appl. Phys. Lett.
78
, 3738
(2001
).7.
J.
Inaba
and T.
Katsufuji
, Phys. Rev. B
72
, 054208
(2005
).8.
T.
Hara
, Mater. Chem. Phys.
91
, 243
(2005
).9.
T. H.
Fang
, Y. J.
Hsiao
, Y. S.
Chang
, and Y. H.
Chang
, Mater. Chem. Phys.
100
, 418
(2006
).10.
A.
Tkach
, P. M.
Vilarinho
, A. L.
Kholkin
, A.
Paskhin
, S.
Veljko
, and J.
Petzelt
, Phys. Rev. B
73
, 104113
(2006
).11.
T.
Tomio
, H.
Miki
, H.
Tabata
, T.
Kawai
, and S.
Kawai
, J. Appl. Phys.
76
, 5886
(1994
).12.
S.
Ohta
, T.
Nomura
, H.
Ohta
, M.
Hirano
, H.
Hosono
, and K.
Koumoto
, Appl. Phys. Lett.
87
, 092108
(2005
).13.
Y.
Ishida
, R.
Eguchi
, M.
Matsunami
, K.
Horiba
, M.
Taguchi
, A.
Chainani
, Y.
Senba
, H.
Ohashi
, H.
Ohta
, and S.
Shin
, Phys. Rev. Lett.
100
, 056401
(2008
).14.
P.
Blaha
, K.
Schwarz
, G.
Madsen
, D.
Kvasicka
, and J.
Luitz
, wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(Technical University of Vienna
, Vienna
, 2001
).15.
S.
Nazir
and U.
Schwingenschlögl
, Appl. Phys. Lett.
99
, 073102
(2011
).16.
M.
Upadhyay Kahaly
, S.
Nazir
, and U.
Schwingenschlögl
, Appl. Phys. Lett.
99
, 123501
(2011
).17.
U.
Schwingenschlögl
and C.
Schuster
, EPL
86
, 27005
(2009
).18.
U.
Schwingenschlögl
and C.
Schuster
, Phys. Rev. Lett.
102
, 227002
(2009
).19.
K.
Ozdogan
, M.
Upadhyay Kahaly
, S. R.
Sarath Kumar
, H. N.
Alshareef
, and U.
Schwingenschlögl
, J. Appl. Phys.
111
, 054313
(2012
).20.
G. K. H.
Madsen
and D. J.
Singh
, Comput. Phys. Commun.
175
, 67
(2006
).21.
X. G.
Guo
, X. S.
Chen
, and W.
Lu
, Solid State Commun.
126
, 441
(2003
).22.
Y. I.
Ravich
, B. A.
Efimova
, and I. A.
Smirov
, Semiconducting Lead Chalcogenides
(Plenum
, New York
, 1970
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.