Photoluminescence measurements have been performed on a series of InGaN/GaN multiple quantum well (MQW) nanorod array structures in order to investigate the influence of a nanorod structure on longitudinal optical (LO) phonon-exciton interaction. The nanorod array structures were fabricated on InGaN/GaN MQW epi-wafers using a self-organised Ni nano-mask technique. Compared with their corresponding as-grown samples, all the nanorod structures exhibit a significant reduction in Huang-Rhys factor, indicating a reduced coupling between LO-phonon and exciton. This is attributed to strain relaxation as a result of being fabricated into nanorod structures. Our excitation power dependent measurements have demonstrated that the nanorod structures exhibit a clear reduction in efficiency droop at a high excitation power. This proves a theoretical prediction previously reported, namely, LO-phonon-exciton coupling contributes to an indirect Auger recombination, leading to the efficiency droop of InGaN/GaN based emitters. The nanorod structures offering a reduced phonon-exciton coupling can pave the way for reducing or eliminating efficiency droop, one of the major challenges in the field of III-nitride optoelectronics.

1.
Y. C.
Shen
,
G. O.
Mueller
,
S.
Watanabe
,
N. F.
Gardner
,
A.
Munkholm
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
141101
(
2007
).
2.
M. H.
Kim
,
M. F.
Schubert
,
Q.
Dai
,
J. K.
Kim
,
E. F.
Schubert
,
J.
Piprek
, and
Y.
Park
,
Appl. Phys. Lett.
91
,
183507
(
2007
).
3.
N. F.
Gardner
,
G. O.
Müller
,
Y. C.
Shen
,
G.
Chen
,
S.
Watanabe
,
W.
Götz
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
243506
(
2007
).
4.
K.
Delaney
,
P.
Rinke
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
94
,
191109
(
2009
).
5.
A.
Laubsch
,
M.
Sabathil
,
W.
Bergbauer
,
M.
Strassburg
,
H.
Lugauer
,
M.
Peter
,
S.
Lutgen
,
N.
Linder
,
K.
Streubel
,
J.
Hader
,
J. V.
Moloney
,
B.
Pasenow
, and
S. W.
Koch
,
Phys. Status Solidi C
6
,
S913
(
2009
).
6.
U.
Özgür
,
H.
Liu
,
X.
Li
,
X.
Ni
, and
H.
Morkoç
,
Proc. IEEE
98
,
1180
(
2010
).
7.
E.
Kioupakis
,
P.
Rinke
,
K. T.
Delaney
, and
C. G.
van de Walle
,
Appl. Phys. Lett.
98
,
161107
(
2011
).
8.
R.
Heitz
,
I.
Mukhametzhanov
,
O.
Stier
,
A.
Madhukar
, and
D.
Bimberg
,
Phys. Rev. Lett.
83
,
4654
(
1999
).
9.
E.
Kioupakis
,
P.
Rinke
,
A.
Schleife
,
F.
Bechstedt
, and
C. G.
Van de Walle
,
Phys. Rev. B
81
,
241201
(
2010
).
10.
R. W.
Martin
,
P. R.
Edwards
,
R.
Pecharroman-Gallego
,
C.
Liu
,
C. J.
Deatcher
,
I. M.
Watson
, and
K. P.
O’Donnell
,
J. Phys. D
35
,
604
(
2002
).
11.
K. B.
Lee
,
P. J.
Parbrook
,
T.
Wang
,
F.
Ranalli
,
T.
Martin
,
R. S.
Balmer
, and
D. J.
Wallis
,
J. Appl. Phys.
101
,
053513
(
2007
).
12.
R.
Pecharromán-Gallego
,
P. R.
Edwards
,
R. W.
Martin
, and
I. M.
Watson
,
Mater. Sci. Eng., B
93
,
94
(
2002
).
13.
L. T.
Tan
,
R. W.
Martin
,
K. P.
O’Donnell
, and
I. M.
Watson
,
Appl. Phys. Lett.
89
,
101910
(
2006
).
14.
Y. S.
Park
,
M. J.
Holmes
,
Y.
Shon
,
I. T
Yoon
,
H.
Im
, and
R. A.
Taylor
,
Nanoscale Res. Lett.
6
,
81
(
2011
).
15.
16.
D.
Chen
,
Y.
Luo
,
L.
Wang
,
H.
Li
,
G.
Xi
,
Y.
Jiang
,
Z.
Hao
,
C.
Sun
, and
Y.
Han
,
J. Appl. Phys.
101
,
053712
(
2007
).
17.
Q.
Wang
,
J.
Bai
, and
T.
Wang
,
J. Phys. D
44
,
395102
(
2011
).
18.
J.
Bai
,
Q.
Wang
, and
T.
Wang
,
Phys. Status Solidi A
209
,
477
(
2012
).
19.
K.
Xing
,
Y. P.
Gong
,
J.
Bai
, and
T.
Wang
,
Appl. Phys. Lett.
99
,
181907
(
2011
).
20.
T.
Wang
,
J.
Bai
,
P. J.
Parbrook
, and
A. G.
Cullis
,
Appl. Phys. Lett.
87
,
151906
(
2005
).
21.
J. J.
Hopfield
,
J. Phys. Chem. Solids
10
,
110
(
1959
).
22.
I.
Brener
,
M.
Olszakier
,
E.
Cohen
,
E.
Ehrenfreund
,
A.
Ron
, and
L.
Pfeiffer
,
Phys. Rev. B
46
,
7927
(
1992
).
23.
D. J.
Mowbray
,
O. P.
Kowalski
,
M. S.
Skolnick
,
M.
Hopkinson
, and
J. P. R.
David
,
Superlattices Microstruct.
15
,
313
(
1994
).
You do not currently have access to this content.