Spinmotive force induced by domain wall motion in perpendicularly magnetized nanowires is numerically demonstrated. We show that using nanowires with large magnetic anisotropy can lead to a high stability of spinmotive force under strong magnetic fields. We observe spinmotive force in the order of tens of μV in a multilayered Co/Ni nanowire and several hundreds of μV in a L10-ordered FePt nanowire; the latter is two orders of magnitude greater than that in permalloy nanowires reported previously. The narrow structure and low mobility of a domain wall under magnetic fields in perpendicularly magnetized nanowires permits downsizing of spinmotive force devices.

1.
Concepts in Spin Electronics
, edited by
S.
Maekawa
(
Oxford University Press
,
Oxford
,
2006
).
2.
L.
Berger
,
J. Appl. Phys.
55
,
1954
(
1984
).
3.
G.
Tatara
and
H.
Kohno
,
Phys. Rev. Lett.
92
,
086601
(
2004
).
4.
S.
Zhang
and
Z.
Li
,
Phys. Rev. Lett.
93
,
127204
(
2004
).
5.
S. E.
Barnes
and
S.
Maekawa
,
Phys. Rev. Lett.
95
,
107204
(
2005
).
6.
A.
Yamaguchi
,
T.
Ono
,
S.
Nasu
,
K.
Miyake
,
K.
Mibu
, and
T.
Shinjo
,
Phys. Rev. Lett.
92
,
077205
(
2004
).
7.
E.
Saitoh
,
H.
Miyajima
,
T.
Yamaoka
, and
G.
Tatara
,
Nature
432
,
203
(
2004
).
8.
M.
Kläui
,
C. A. F.
Vaz
,
J. A. C.
Bland
,
W.
Wernsdorfer
,
G.
Faini
,
E.
Cambril
,
L. J.
Heyderman
,
F.
Nolting
, and
U.
Rüdiger
,
Phys. Rev. Lett.
94
,
106601
(
2005
).
9.
G. S. D.
Beach
,
C.
Knutson
,
C.
Nistor
,
M.
Tsoi
, and
J. L.
Erskine
,
Phys. Rev. Lett.
97
,
057203
(
2006
).
10.
M.
Hayashi
,
L.
Thomas
,
R.
Moriya
,
C.
Rettner
, and
S. S. P.
Parkin
,
Science
320
,
209
(
2008
).
11.
D.
Ravelosona
,
S.
Mangin
,
J. A.
Katine
,
E. E.
Fullerton
, and
B. D.
Terris
,
Appl. Phys. Lett.
90
,
072508
(
2007
).
12.
H.
Tanigawa
,
T.
Koyama
,
G.
Yamada
,
D.
Chiba
,
S.
Kasai
,
S.
Fukami
,
T.
Suzuki
,
N.
Ohshima
,
N.
Ishiwata
,
Y.
Nakatani
, and
T.
Ono
,
Appl. Phys. Express
2
,
053002
(
2009
).
13.
S.
Fukami
,
T.
Suzuki
,
N.
Ohshima
,
K.
Nagahara
, and
N.
Ishiwata
,
J. Appl. Phys.
103
,
07E718
(
2008
).
14.
S. W.
Jung
,
W.
Kim
,
T. D.
Lee
,
K. J.
Lee
, and
H. W.
Lee
,
Appl. Phys. Lett.
92
,
202508
(
2008
).
15.
S. E.
Barnes
and
S.
Maekawa
,
Phys. Rev. Lett.
98
,
246601
(
2007
).
16.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
17.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Phys. Rev. Lett.
88
,
066603
(
2002
).
18.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Appl. Phys. Lett.
82
,
221
(
2003
).
19.
S. E.
Barnes
,
J.
Ieda
, and
S.
Maekawa
,
Appl. Phys. Lett.
89
,
122507
(
2006
).
20.
S. A.
Yang
,
G. S. D.
Beach
,
C.
Knutson
,
D.
Xiao
,
Q.
Niu
,
M.
Tsoi
, and
J. L.
Erskine
,
Phys. Rev. Lett.
102
,
067201
(
2009
).
21.
J.
Ohe
and
S.
Maekawa
,
J. Appl. Phys.
105
,
07C706
(
2009
).
22.
Y.
Yamane
,
J.
Ieda
,
J.
Ohe
,
S. E.
Barnes
, and
S.
Maekawa
,
Appl. Phys. Express
4
,
093003
(
2011
).
23.
Y.
Yamane
,
K.
Sasage
,
A.
Toshu
,
K.
Harii
,
J.
Ohe
,
J.
Ieda
,
S. E.
Barnes
,
E.
Saitoh
, and
S.
Maekawa
,
Phys. Rev. Lett.
107
,
236602
(
2011
).
24.
M. E.
Lucassen
,
G. C. F. L.
Kruis
,
R.
Lavrijsen
,
H. J. M.
Swagten
,
B.
Koopmans
, and
R. A.
Duine
,
Phys. Rev. B
84
,
014414
(
2011
).
25.
M.
Hayashi
,
J.
Ieda
,
Y.
Yamane
,
J.
Ohe
,
Y.
Takahashi
,
S.
Mitani
, and
S.
Maekawa
,
Phys. Rev. Lett.
108
,
147202
(
2012
).
26.
E.
Martinez
,
L.
Torres
, and
L.
Lopez-Diaz
,
Phys. Rev. B
83
,
174444
(
2011
).
27.
G. E.
Volovik
,
J. Phys. C
20
,
L83
(
1987
).
28.
R. A.
Duine
,
Phys. Rev. B
77
,
014409
(
2008
).
29.
Y.
Tserkovnyak
and
M.
Mecklenburg
,
Phys. Rev. B
77
,
134407
(
2008
).
30.
Y.
Yamane
,
J.
Ieda
,
J.
Ohe
,
S. E.
Barnes
, and
S.
Maekawa
,
J. Appl. Phys.
109
,
07C735
(
2011
).
31.
J.
Shibata
and
H.
Kohno
,
Phys. Rev. B
84
,
184408
(
2011
).
32.
M.
Hayashi
,
S.
Kasai
, and
S.
Mitani
,
Appl. Phys. Express
3
,
113004
(
2010
).
33.
The oommf code has been developed by M. J. Donahue and D. G. Porter.
34.
T.
Koyama
,
D.
Chiba
,
K.
Ueda
,
H.
Tanigawa
,
S.
Fukami
,
T.
Suzuki
,
N.
Ohshima
,
N.
Ishiwata
,
Y.
Nakatani
, and
T.
Ono
,
Appl. Phys. Lett.
98
,
192509
(
2011
).
35.
T.
Seki
,
S.
Mitani
, and
K.
Takanashi
,
Phys. Rev. B
77
,
214414
(
2008
).
36.
T.
Jordan
,
J. P.
Attané
,
F.
Lançon
,
C.
Beigné
,
L.
Vila
, and
A.
Marty
,
J. Magn. Magn. Mater.
321
,
2187
(
2009
).
37.
The DW velocity is defined as d/t m/s, where d is the distance that the DW center travels over the time t = 3 ns. Since the DW is now narrow enough, the DW center is clearly defined.
38.
A. P.
Malozemoff
and
J. C.
Slonczewski
,
Magnetic Domain Walls in Bubble Materials
(
Academic
,
New York
,
1979
).
39.
M.
Hayashi
,
L.
Thomas
,
C.
Rettner
,
R.
Moriya
, and
S. S.
Parkin
,
Nat. Phys.
3
,
21
(
2007
).
You do not currently have access to this content.