Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

1.
O. L.
Krivanek
,
M. F.
Chisholm
,
V.
Nicolosi
,
T. J.
Pennycook
,
G. J.
Corbin
,
N.
Dellby
,
M. F.
Murfitt
,
C. S.
Own
,
Z. S.
Szilagyi
,
M. P.
Oxley
,
S. T.
Pantelides
, and
S. J.
Pennycook
,
Nature (London)
464
,
571
(
2010
).
2.
M.
Varela
,
J.
Gazquez
,
T. J.
Pennycook
,
C.
Magen
,
M. P.
Oxley
:
S. J.
Pennycook
in
Scanning Transmission Electron Microscopy: Imaging and Analysis
, edited by
S. J.
Pennycook
and
P. D.
Nellist
(
Springer
,
New York
,
2011
), Chap. 10.
3.
K.
Suenaga
,
M.
Tence
,
C.
Mory
,
C.
Colliex
,
H.
Kato
,
T.
Okazaki
,
H.
Shinohara
,
K.
Hirahara
,
S.
Bandow
, and
S.
Iijima
,
Science
290
,
2280
(
2000
).
4.
O. L.
Krivanek
,
N.
Dellby
,
M. F.
Murfitt
,
M. F.
Chisholm
,
T. J.
Pennycook
,
K.
Suenaga
, and
V.
Nicolosi
,
Ultramicroscopy
110
,
935
(
2010
).
5.
O. L.
Krivanek
,
M. F.
Chisholm
,
M. F.
Murfitt
, and
N.
Dellby
, “
Scanning transmission electron microscopy: Albert Crewe's vision and beyond
,” (unpublished).
6.
Q. M.
Ramasse
,
R.
Zan
,
U.
Bangert
,
N.
Boukhavalov
,
Y. W.
Son
, and
K.
Novoselov
, “
Direct experimental evidence of metal-mediated graphene etching
,” (unpublished).
7.
M.
Isaacson
and
D.
Johnson
,
Ultramicroscopy
1
,
33
(
1975
).
8.
O. L.
Krivanek
,
N.
Dellby
, and
A. R.
Lupini
,
Ultramicroscopy
78
,
1
(
1999
).
9.
P. E.
Batson
,
N.
Dellby
, and
O. L.
Krivanek
,
Nature (London)
418
,
617
(
2002
).
10.
N.
Dellby
,
N. J.
Bacon
,
P.
Hrncirik
,
M. F.
Murfitt
,
G. S.
Skone
,
Z. S.
Szilagyi
, and
O. L.
Krivanek
,
Eur. Phys. J.: Appl. Phys.
54
,
33505
(
2011
).
11.
A. J.
D’Alfonso
,
B.
Freitag
,
D.
Klenov
, and
L. J.
Allen
,
Phys. Rev. B
81
,
100101
R
(
2010
).
12.
M.-W.
Chu
,
S. C.
Liou
,
C.-P.
Chang
,
F.-S.
Choa
, and
C. H.
Chen
,
Phys. Rev. Lett.
104
,
196101
(
2010
).
13.
D. O.
Klenov
and
J. M. O.
Zide
,
Appl. Phys. Lett.
99
,
141904
(
2011
).
14.
O. L.
Krivanek
,
G. J.
Corbin
,
N.
Dellby
,
B. F.
Elston
,
R. J.
Keyse
,
M. F.
Murfitt
,
C. S.
Own
,
Z. S.
Szilagyi
, and
J. W.
Woodruff
,
Ultramicroscopy
108
,
179
(
2008
).
15.
M.
Falke
, private communication (
2012
).
16.
D.
Bote
,
F.
Salvat
,
A.
Jablonski
, and
C. J.
Powell
,
At. Data Nucl. Data Tables
95
,
871
(
2009
).
17.
X.
Long
,
M.
Liu
,
F.
Ho
, and
X.
Peng
,
At. Data Nucl. Data Tables
45
,
353
(
1990
).
19.
W. T.
Elam
,
B. D.
Ravel
, and
J. R.
Sieber
,
Radiat. Phys. Chem.
63
,
121
(
2002
). For this calculation, we include the possibility of ionizing an M1-4 vacancy, undergoing a Coster-Kronig transition, and emitting an Mα (M5-N6,7) or Mβ (M4-N6) x-ray. Compared to the K lines, the M line cross sections are probably less accurate due to the increased complexity and the absence of experimental data for Pt.
20.
Y.
Chauhan
and
S.
Puri
,
At. Data Nucl. Data Tables
94
,
38
(
2008
).
21.
K.
Suenaga
,
K.
Okazaki
,
E.
Okunishi
, and
S.
Matsumura
(unpublished).
You do not currently have access to this content.