The explicit kinetic relation for twin wall motion in NiMnGa is used to correlate basic material properties to magneto-mechanical actuation rates in these crystals. In particular, we identify two parameters: the Peierls energy barrier and the twin wall mobility, which directly determine the dynamic response of NiMnGa actuators at frequencies above 10 Hz. Comparison between the kinetics of type I and type II twin walls reveals a correlation between the Peierls energy barrier and the commonly used twinning stress property. However, it is shown that twinning stress dictates twin wall dynamics only at very slow frequencies, typically below 1 Hz.

1.
A.
Sozinov
,
A. A.
Likhachev
,
N.
Lanska
, and
K.
Ullakko
,
Appl. Phys. Lett.
80
,
1746
(
2002
).
2.
C. P.
Henry
,
P. G.
Tello
,
D.
Bono
,
J.
Hong
,
R.
Wagner
,
J.
Dai
,
S. M.
Allen
, and
R. C.
O’Handley
,
Proc. SPIE
5053
,
207
(
2003
).
3.
M. A.
Marioni
,
R. C.
O’Handley
, and
S. M.
Allen
,
Appl. Phys. Lett.
83
,
3966
(
2003
).
4.
I.
Suorsa
,
E.
Pagounis
, and
K.
Ullakko
,
J. Magn. Magn. Mater.
272
,
2029
(
2004
).
5.
K.
Ullakko
,
J. K.
Huang
,
C.
Kantner
, and
R. C.
O’Handley
,
Appl. Phys. Lett.
69
,
1966
(
1996
).
6.
P.
Mullner
,
V. A.
Chernenko
, and
G.
Kostorz
,
J. Magn. Magn. Mater.
267
,
325
(
2003
).
7.
O.
Heczko
,
L.
Straka
, and
K.
Ullakko
,
J. Phys. IV France
112
,
959
(
2003
).
8.
L.
Straka
,
O.
Heczko
, and
H.
Hanninen
,
Acta Mater.
56
,
5492
(
2008
).
9.
M. A.
Marioni
,
R. C.
O’Handley
, and
S. M.
Allen
,
Appl. Phys. Lett.
84
,
4071
(
2004
).
10.
E.
Faran
and
D.
Shilo
,
J. Mech. Phys. Solids
59
,
975
(
2011
).
11.
E.
Faran
and
D.
Shilo
, “
The kinetic relation for twin wall motion in NiMnGa - part 2
,” J. Mech. Phys. Solids (submitted).
12.
A thorough expression for the kinetic relation in the range g<g0 is developed in Ref. 11 and given by vs=v0exp[-C1kBT(1+C2·g0g)], where the parameters v0, C1, and C2 depend on few material properties of the twin wall. The approximate expression given by Eq. (1) is sufficient to describe the thermally activated nature of the kinetics at this range and its dependence on the driving force.
13.
R.
Abeyaratne
,
C.
Chu
, and
R. D.
James
,
Philos. Mag. A
73
,
457
(
1996
).
14.
A. A.
Likhachev
and
K.
Ullako
,
Phys. Lett. A
275
,
142
(
2000
).
15.
16.
A.
Sozinov
,
N.
Lanska
,
A.
Soroka
, and
L.
Straka
,
Appl. Phys. Lett.
99
,
124103
(
2011
).
17.
O.
Heczko
,
K.
Prokes
, and
S.-P.
Hannula
,
J. Magn. Magn. Mater.
316
,
386
(
2007
).
18.
M.
Chmielus
,
K.
Rolfs
,
R.
Wimpory
,
W.
Reimers
,
P.
Mullner
, and
R.
Schneider
,
Acta Mater.
58
,
3952
(
2010
).
19.
W. T.
Lee
,
E. K. H.
Salje
,
L.
Goncalves-Ferreira
,
M.
Daraktchiev
, and
U.
Bismayer
,
Phys. Rev. B
73
,
214110
(
2006
).
20.
L.
Straka
,
O.
Heczko
,
H.
Seiner
,
N.
Lanska
,
J.
Drahokoupil
,
A.
Soroka
,
S.
Fahler
,
H.
Hanninen
, and
A.
Sozinov
,
Acta Mater.
59
,
7450
(
2011
).
21.
D.
Shilo
,
A.
Mendelovich
, and
V.
Novak
,
Appl. Phys. Lett.
90
,
193113
(
2007
).
22.
Y.
Ganor
and
D.
Shilo
,
Appl. Phys. Lett.
93
,
031905
(
2008
).
You do not currently have access to this content.