The hydrogenation of Mg0.8125Ti0.1875 was investigated by density functional calculations, using a model where Ti was segregated into nano-clusters. Introducing small amounts of hydrogen resulted in significant stabilization, with the mixing enthalpy (cohesive energy relative to standard state elements) becoming negative for hydrogen contents exceeding 0.07 H per metal. H prefers sites on the interface between Mg and Ti, with hydrogenation energies down to –115 kJ/(mol H2). Trapping of H on these very stable sites is proposed as an alternative explanation to why the reversibility of Mg-Ti thin films, which are initially meta-stable, can be preserved over many cycles of hydrogenation.

1.
D. M.
Borsa
,
A.
Baldi
,
M.
Pasturel
,
H.
Schreuders
,
B.
Dam
,
R.
Griessen
,
P.
Vermeulen
, and
P. H. L.
Notten
,
Appl. Phys. Lett.
88
,
241910
(
2006
).
2.
A.
Anders
,
J. L.
Slack
, and
T. J.
Richardson
,
Thin Solid Films
517
,
1021
(
2008
).
3.
M.
Pasturel
,
M.
Slaman
,
D. M.
Borsa
,
H.
Schreuders
,
B.
Dam
, and
R.
Griessen
,
Appl. Phys. Lett.
89
,
021913
(
2006
).
4.
S. Z.
Karazhanov
,
A. G.
Ulyashin
,
P.
Vajeeston
, and
P.
Ravindran
,
Philos. Mag.
88
,
2461
(
2008
).
5.
R. A. H.
Niessen
and
P. H. L.
Notten
,
Electrochem. Solid-State Lett.
8
,
A534
(
2005
).
6.
D. M.
Borsa
,
R.
Gremaud
,
A.
Baldi
,
H.
Schreuders
,
J. H.
Rector
,
B.
Kooi
,
P.
Vermeulen
,
P. H. L.
Notten
,
B.
Dam
, and
R.
Griessen
,
Phys. Rev. B
75
,
205408
(
2007
).
7.
A.
Zaluska
,
L.
Zaluski
, and
J. O.
Strm-Olsen
,
Appl. Phys. A: Mater. Sci. Process
72
,
157
(
2001
).
8.
M.
Dornheim
,
N.
Eigen
,
G.
Barkhordarian
,
T.
Klassen
, and
R.
Bormann
,
Adv. Eng. Mater.
8
,
377
(
2006
).
9.
F.
von Zeppelin
,
H.
Reule
, and
M.
Hirscher
,
J. Alloys Compd.
330
,
723
(
2002
).
10.
J. F.
Pelletier
,
J.
Huot
,
M.
Sutton
,
R.
Schulz
,
A. R.
Sandy
,
L. B.
Lurio
, and
S. G. J.
Mochrie
,
Phys. Rev. B
63
,
052103
(
2001
).
11.
X. D.
Yao
,
C. Z.
Wu
,
A. J.
Du
,
G. Q.
Lu
,
H. M.
Cheng
,
S. C.
Smith
,
J.
Zou
, and
Y.
He
,
J. Phys. Chem. B
110
,
11697
(
2006
).
12.
D. G.
Nagengast
,
A. T. M.
van Gogh
,
E. S.
Kooij
,
B.
Dam
, and
R.
Griessen
,
Appl. Phys. Lett.
75
,
2050
(
1999
).
13.
D.
Sun
,
F.
Gingl
,
Y.
Nakamura
,
H.
Enoki
,
M.
Bououdina
, and
E.
Akiba
,
J. Alloys Compd.
333
,
103
(
2002
).
14.
P.
Vermeulen
,
R. A. H.
Niessen
, and
P. H. L.
Notten
,
Electrochem. Commun.
8
,
27
(
2006
).
15.
P.
Vermeulen
,
H. J.
Wondergem
,
P. C. J.
Graat
,
D. M.
Borsa
,
H.
Schreuders
,
B.
Dam
,
R.
Griessen
, and
P. H. L.
Notten
,
J. Mater. Chem.
18
,
3680
(
2008
).
16.
R.
Gremaud
,
A.
Baldi
,
M.
Gonzalez-Silveira
,
B.
Dam
, and
R.
Griessen
,
Phys. Rev. B
77
,
144204
(
2008
).
17.
A.
Baldi
,
R.
Gremaud
,
D. M.
Borsa
,
C. P.
Bald
,
A. M. J.
van der Eerden
,
G. L.
Kruijtzer
,
P. E.
de Jongh
,
B.
Dam
, and
R.
Griessen
,
Int. J. Hydrogen Energy
34
,
1450
(
2009
).
18.
I. J. T.
Jensen
,
S.
Diplas
, and
O. M.
Lvvik
,
Phys. Rev. B
82
,
174121
(
2010
).
19.
S. X.
Tao
,
P. H. L.
Notten
,
R. A.
van Santen
, and
A. P. J.
Jansen
,
J. Alloys Compd.
509
,
210
(
2011
).
20.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
21.
G.
Kresse
and
J.
Furthmller
,
Phys. Rev. B
54
,
11169
(
1996
).
22.
G.
Kresse
and
J.
Furthmller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
23.
P.
Vermeulen
,
P. C. J.
Graat
,
H. J.
Wondergem
, and
P. H. L.
Notten
,
Int. J. Hydrogen Energy
33
,
5646
(
2008
).
25.
S.
Er
,
D.
Tiwari
,
G. A.
de Wijs
, and
G.
Brocks
,
Phys. Rev. B
79
,
024105
(
2009
).
You do not currently have access to this content.