Gold nanostructures, with a wide size distribution, are confined between a metal foil and the oxide substrate upon which they were formed. When heated the surface energy gradient between the oxide and foil results in a net migration of gold atoms from the nanostructure to the foil. With time, the nanostructures show a size reduction and a narrowed size distribution. The narrowing results from the formation of foil contact points with only the largest nanostructures, a characteristic which leaves small nanostructures intact while consuming larger ones. Also demonstrated is the size reduction of arrayed gold structures to nanoscale dimensions.

1.
C.
Sonnichsen
,
B. M.
Reinhard
,
J.
Liphardt
, and
A. P.
Alivisatos
,
Nat. Biotechnol.
23
,
741
(
2005
).
2.
N. P. W.
Pieczonka
and
R. F.
Aroca
,
Chem. Soc. Rev.
37
,
946
(
2008
).
3.
L.
Billot
,
M.
Lamy de la Chapelle
,
A. S.
Grimault
,
A.
Vial
,
D.
Barchiesi
,
J. L.
Bijeon
,
P. M.
Adam
, and
P.
Royer
,
Chem. Phys. Lett.
422
,
303
(
2006
).
4.
C. R.
Henry
,
Prog. Surf. Sci.
80
,
92
(
2005
).
5.
S. J.
Henley
,
J. D.
Carey
, and
S. R. P.
Silva
,
Phys. Rev. B
72
,
195408
(
2005
).
6.
C. Y.
Hsu
,
J. W.
Huang
,
S.
Gwo
, and
K. J.
Lin
,
Nanotechnology
21
,
035302
(
2010
).
7.
F.
Silly
and
M. R.
Castell
,
Phys. Rev. Lett.
96
,
086104
(
2006
).
8.
C. L.
Haynes
and
R. P.
Van Duyne
,
J. Phys. Chem. B
105
,
5599
(
2001
).
9.
A. L.
Giermann
and
C. V.
Thompson
,
J. Appl. Phys.
109
,
083520
(
2011
).
10.
A. L.
Giermann
and
C. V.
Thompson
,
Appl. Phys. Lett.
86
,
121903
(
2005
).
11.
W.
Kan
and
H.
Wong
,
J. Appl. Phys.
97
,
043515
(
2005
).
12.
E.
Jiran
and
C. V.
Thompson
,
Thin Solid Films
208
,
23
(
1992
).
13.
J.
Basu
,
C. B.
Carter
,
R.
Divakar
,
B.
Mukherjee
, and
N.
Ravishankar
,
Appl. Phys. Lett.
94
,
171114
(
2009
).
14.
C. M.
Mueller
,
F. C. F.
Mornaghini
, and
R.
Spolenak
,
Nanotechnology
19
,
485306
(
2008
).
15.
I.
Beszeda
,
E. G.
Gontier-Moya
, and
A. W.
Imre
,
Appl. Phys.
81
,
673
(
2005
).
16.
B. Q.
Li
and
J. M.
Zuo
,
J. Appl. Phys.
94
,
743
(
2003
).
17.
G. A.
Devenyi
,
J.
Li
,
R. A.
Hughes
,
A.-C.
Shi
,
P.
Mascher
, and
J. S.
Preston
,
Nano Lett.
9
,
4258
(
2009
).
18.
Y.
Yoo
,
K.
Seo
,
S.
Han
,
K. S. K.
Varadwaj
,
H. Y.
Kim
,
J. H.
Ryu
,
H. M.
Lee
,
J. P.
Ahn
,
H.
Ihee
, and
B.
Kim
,
Nano Lett.
10
,
432
(
2010
).
19.
J. A.
Rogers
and
H. H.
Lee
,
Unconventional Nanopatterning Techniques and Applications
(
Wiley
,
Hoboken, NJ
,
2009
).
20.
E. J.
De Souza
,
M.
Brinkmann
,
C.
Mohrdieck
,
A.
Crosby
, and
E.
Arzt
,
Langmuir
24
,
10161
(
2008
).
21.
W. R.
Tyson
and
W. A.
Miller
,
Surf. Sci.
62
,
267
(
1977
).
22.
N. A.
Lange
and
J. G.
Speight
,
Lange’s Handbook of Chemistry
(
McGraw-Hill
,
New York
,
2005
).
23.
X.
Huang
,
S.
Neretina
, and
M. A.
El-Sayed
,
Adv. Mater.
21
,
4880
(
2009
).
24.
M. C.
Plante
and
R. R.
LaPierre
,
J. Cryst. Growth
286
,
394
(
2006
).
25.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
,
Chem. Rev.
108
,
845
(
2008
).
You do not currently have access to this content.