Effective passivation of defects is an important step toward achieving highly efficient and stable Perovskite Solar Cells (PSCs). In this work, we introduce the incorporation of two different octylammonium based spacer cations as 2D perovskite passivation layers, namely Octylammonium Bromide (OABr) and octylammonium iodide. PSCs with OABr as a 2D passivation layer demonstrated an enhanced Power Conversion Efficiency (PCE) of 21.40% (the control device has a PCE of 20.26%), resulting in a higher open circuit voltage of 40 mV. The 2D perovskite passivation layers lead to a smoother interface and a better contact with the hole transport layer, while transient photoluminescence and transient photovoltage measurements indicated reduced non-radiative recombination. Unencapsulated devices retained almost 90% of their initial PCE after 500 h of exposure under high ambient humidity conditions, confirming that the surface passivation treatment has led to improved device stability.

Perovskite solar cells (PSCs) are an emerging PV technology with beneficial optoelectronic properties, such as high absorption coefficients,1 long diffusion lengths,2 tunable bandgap,3,4 and high charge carrier mobilities.5 The Power Conversion Efficiency (PCE) of PSCs has evolved from 3.8%6 to values exceeding 25%7–10 within just a decade. The collaborative research effort of the perovskite community has led to improved device performance and stability bringing the PSC technology one step closer to commercialization. Nonetheless, the reported PCE values are still lower than the theoretical limits,11–13 while extended lifetime stability performance under accelerated aging tests or realistic outdoor conditions is still under investigation.14,15

One of the major factors for the rapid evolution of PSCs is their facile solution-based processing performed at low temperatures. However, solution-processed thin film deposition techniques can lead to formation of defects in the bulk of the perovskite film and at the relevant interfaces.16–18 The presence of these defects results in non-radiative recombination effects that hinder the photovoltaic performance and stability.19,20 Defect passivation is an efficient method to minimize the impact of traps in the perovskite film and, therefore, suppress the non-radiative recombination, leading to improved PCEs.21 Defect passivation strategies include solvent and deposition engineering,22,23 additives incorporation,24,25 and surface passivation by using buffer layers at one perovskite/transport-layer interface26,27 or dual passivation at both perovskite/transport layer interfaces.28 

Surface passivation of perovskite films is implemented by utilizing various organic materials. Jiang et al. used Phenethylammonium Iodide (PEAI) molecules to passivate perovskite traps in formamidinium lead iodide (α-FAPbI3) developed on a planar structure. The PCE of optimized PEAI-treated devices was 23.56%. This enhanced PCE value stemmed from the reduced surface recombination.29 Li et al. synthesized a piperazinium iodide molecule for the surface treatment of perovskite films. The passivation treatment suppressed the non-radiative recombination losses, leading to Voc and PCE improvement from 20.76% to 23.37%.30 Zhu et al. developed a passivation agent, namely 4-tert-butyl-benzylammonium iodide (tBBAI). The tBBAI-treated PSCs exhibited a PCE boost from 21.2% to 23.5%, demonstrating a high fill factor. The tBBAI treatment accelerated the charge transfer, while it reduced the surface recombination. In addition, the PSCs maintained more than 95% of their efficiency under continuous illumination.31 

An alternate route for defect passivation is realized through dimensional engineering. Following this approach, the treatment of 3D perovskite films with various organic spacer cations enables the formation of low-dimensional (2D) perovskite structures caused by the substitution or replacement of the A-site cation, forming layered 2D/3D or columnar 1D/3D mixed perovskites.32–34 2D perovskite compounds are divided into two main categories: Ruddlesden–Popper (RP)35 and Dion–Jacobson (DJ) perovskites.36 While 3D perovskites are susceptible to humidity,37 the organic interlayer spacers used to form 2D perovskites are often hydrophobic, resulting in an improved PSC lifetime.38–40 The passivation of 2D structures on the 3D perovskite results in reduced trap-assisted recombination.41 

2D perovskites are formed by employing long alkylammonium or aryl ammonium monovalent cations. Among them, some typical spacer cations used to form 2D/3D heterostructures in PSCs include Phenethylammonium (PEA+),42 Butylammonium (BA+),43 Octylammonium (OA+),44 and Guanidinium (GUA+).45 Mozaffari et al. used a mixture of n-octylammonium bromide and Guanidinium Bromide (GUABr) as the spacer cations. The resulting 2D/3D heterostructure outperformed the control PSCs (3D perovskite), and the PCE was increased from 21.37% to 23.13%, demonstrating also a much-improved stability. The OABr/GUABr mixture was shown to reduce the trap-assisted recombination at the perovskite/hole transport layer (HTL) interface.46 Mahmud et al. investigated the passivation effect of octylammonium spacer cations [Octylammonium Iodide (OAI), Octylammonium Bromide (OABr), and Octylammonium Chloride (OACl)] on a four-cation perovskite in a mesoporous structure. Devices based on OACl showed the best performance compared to the reference device having either OAI or OABr. Additional characterizations revealed that Cl diffuses toward the perovskite bulk, causing simultaneous perovskite surface and bulk passivation.47 

Most of the reports in the literature commonly use OAI spacer cations to form the 2D/3D perovskite heterostructure.48–52 In this work, we employ OABr spacer cations to study the formation of a 3D/2D heterostructure on a sequentially deposited FA1−xMAxPbI3 perovskite in a planar structure. We show that the OABr-treated PSCs exhibited a PCE enhancement from 20.26% of the control device to 21.40%, while the open circuit voltage (Voc) is increased by 40 mV on average. PSC devices treated with OAI were also fabricated; however, their performance was inferior compared to OABr-based PSCs. Material and device characterization revealed that the improved Voc is due to the reduced non-radiative recombination induced by the OABr passivation layer, as shown by Time Resolved Photoluminescence (TRPL) and Transient Photovoltage (TPV) measurements. Furthermore, OABr-treated PSCs retained almost 90% of their initial PCE after 500 h of exposure to high ambient humidity conditions without encapsulation.

The light absorbance of perovskite thin films coated on glass was measured using ultraviolet–visible (UV–vis) spectroscopy, with and without the 2D passivation layers, as shown in Fig. 1(a). All films exhibited an absorbance onset at ∼810 nm that is a characteristic of FAPbI3, but no considerable difference is reported, which suggests that the effect of passivation on the optical characteristics is insignificant. The optical bandgap energy (Eg) for the same samples was calculated by the Tauc plot [Fig. 1(b)], where a negligible variation between the samples is observed, implying that the 3D perovskite has remained intact after the formation of the 2D passivation layer on top of it.

FIG. 1.

(a) UV–vis absorption spectra, (b) the Tauc plot, (c) steady state photoluminescence spectra, and (d) time-resolved photoluminescence of the 3D perovskite layer, with and without OAI and OABr 2D passivation.

FIG. 1.

(a) UV–vis absorption spectra, (b) the Tauc plot, (c) steady state photoluminescence spectra, and (d) time-resolved photoluminescence of the 3D perovskite layer, with and without OAI and OABr 2D passivation.

Close modal

X-ray diffraction (XRD) measurements were carried out in perovskite layers to study the phase content of thin films, with and without the passivation layers of OAI and OABr (Fig. S1) on top. It should be noted here that due to the very low thickness of the 2D passivation layer compared to the bulk 3D perovskite, conventional XRD is not able to detect the weak signal intensity originating from the ultra-thin 2D passivation layers observed at low angles.32 As can be observed, there are no changes or shifts in the three obtained XRD patterns, confirming that the structural characteristics of the 3D perovskite α-phase are not affected by the passivation layers OAI and OABr. However, in the obtained XRD pattern without a passivation layer, a weak peak is detected close to 11.8°, which corresponds to the undesired δ-phase of FAPbI3. After the deposition of the 2D passivation layer, it is revealed that the peak intensity of δ-phase is reduced for the case of OAI and becomes fully suppressed for OABr (see the inset). On the other hand, the desired trigonal black α-phase located at 14° is enhanced in the two cases of passivation layer deposition, compared to the pure 3D perovskite layer, which is expected to be favorable for the efficiency of PSC devices.54,55

We also performed steady-state and time-resolved Photoluminescence (PL) measurements to study the charge carrier dynamics for the neat and the passivated perovskite films on a glass/perovskite structure. As shown in Fig. 1(c), there is an enhancement in the PL intensity of the OAI- and OABr-passivated perovskite films. Specifically, a threefold increase in PL intensity was observed for the OAI-passivated perovskite films and a fivefold increase was observed for the OABr-passivated films compared to the pristine perovskite films. The enhanced PL intensity of the passivated films indicates the improved crystallinity of the perovskite.56 The increase in PL intensity also indicates the reduction in non-radiative recombination in perovskite films due to defects57–59 and agrees with the enhanced VOC values of the targeted devices and confirms that the 2D treatment provides the most effective passivation. The PL emission peaks for the reference, OAI-treated, and OABr-treated perovskite films are 800, 799, and 803 nm, respectively. The PL peaks for the passivated films show a slight shift compared to the reference. TRPL measurements were performed for the reference, OAI-treated, and OABr-treated perovskite films according to the time-correlated single photon counting (TCSPC) method. The corresponding TRPL decays for all three cases are shown in Fig. 1(d). A bi-exponential function with the following formula was used to fit the data:
where A1 and A2 are the weights of each decay term and τ1 and τ2 are the time constants of the decay.60 The average lifetime was calculated as follows:61 

A summary of the fitting parameters can be found in Table S1. The average lifetimes of the reference, OAI-treated, and OABr-treated perovskite films were 0.9, 1.2, and 3.1 µs, respectively. The octylammonium salt treatment increases the lifetime compared to the reference, with a threefold increase for the case of OABr. The enhanced lifetimes of the OAI- and OABr-treated perovskite films indicate that the octylammonium salt passivation can reduce non-radiative recombination effects,62–64 in agreement also with the PL results. The formation of the 2D perovskite layer on top of the 3D perovskite layer passivates the defects on the surface of the 3D perovskite that are one of the main sources of non-radiative recombination.65 

A typical procedure for the formation of the 3D/2D perovskite heterostructure is based on the spin-coating process of the spacer cations on top of the 3D perovskite film, followed by a short annealing step. A common solvent used for these spacer cations is Isopropyl Alcohol (IPA).53 For thin film characterizations, we have deposited the perovskite films with or without passivation treatment on glass. A two-step deposition process was employed for the perovskite films on glass or indium tin oxide (ITO)\tin oxide (SnO2) nanoparticle thin film used as the electron transport layer. The first step involves spin-coating of a PbI2 layer in a N2 glovebox, while an annealing step at 70 °C for 1 min is performed afterward. The organic salt solution of FAI, MAI, and MACl is spin-coated on top of the PbI2 layer, and to obtain the α-FAPbI3 phase, an annealing step at 150 °C for 15 min is performed in ambient air. Then, each of the octylammonium spacer cations dissolved in IPA is spin-coated on top of the 3D α-FAPbI3 perovskite layer, while to complete the 3D/2D perovskite transformation, an annealing step at 100 °C for 5 min is performed. The device fabrication is completed by spin-coating spiro-OMeTAD used as the HTL and by the thermal evaporation of an Au electrode. More details about the experimental procedures can be found in the supplementary material. To test the effect of the 2D passivation layer, we fabricated devices with FA1−xMAxPbI3 as the perovskite and the structure ITO/SnO2/perovskite/spiro-OMeTAD/Au (where ITO is indium tin oxide and spiro-OMeTAD is 2,2′,7,7′-tetrakis(N,N-dipmethoxyphenylamine)-9,9′-spirobifluorene) [Fig. 2(a)].

FIG. 2.

(a) Fabricated device architecture, (b) statistical distribution of J–V parameters for PCE, FF, Voc, and Jsc from 20 cells for each parameter.

FIG. 2.

(a) Fabricated device architecture, (b) statistical distribution of J–V parameters for PCE, FF, Voc, and Jsc from 20 cells for each parameter.

Close modal

First, we tested various concentrations to optimize OAI and OABr aiming at the best efficiency and identified that the optimum precursor concentration is 2 mg ml−1 for OAI and 1 mg ml−1 for OABr (Fig. S2). At higher concentrations, the fill factor (FF) is significantly reduced, which is probably attributed to the increase in charge transport resistance, due to the thicker and semi-insulating 2D layer on top of the perovskite.53,66,67 Figure 2(b) shows the box-plots of the photovoltaic characteristics of the control and the optimized 2D/3D PSCs for 20 devices of each configuration. Tables S2–S4 show the parameters of each individual fabricated device. Both passivated devices exhibit higher PCEs than the control device, where OABr-based devices exhibit the highest PCE. The improvement in PCE in the case of OABr (as well as OAI) is due to the higher Voc and the slightly higher short circuit current (Jsc), while OABr-treated PSCs show the highest FF on average compared to the reference and the OAI-treated PSCs. The current density–voltage (J–V) curves for the champion PSC devices are shown in Fig. 3(a), and the photovoltaic parameters for all the devices are shown in Table I. The best performing OABr device has a PCE of 21.40% and a higher Voc of 1.10 V compared to the control device, which has a PCE of 20.26% and a Voc of 1.08 V. On the other hand, the OAI device exhibited a PCE of 20.80% and a Voc of 1.10 V. The OAI device shows the highest Jsc (23.55 mA cm−2) compared to control (22.89 mA cm−2) and OABr (23.41 mA cm−2) devices but, at the same time, has a lower FF of 80% compared to that of the control and OABr devices, which are 82.24% and 82.97%, respectively. The application of the passivation layers led to an improved VOC for all conditions compared to the reference sample. These results indicate that the successful formation of the 2D/3D heterostructure leads to effective defect passivation and improved device performance of the solar cells.

FIG. 3.

(a) J–V curves of best performing devices and (b) EQE and integrated Jsc of the PSCs, with and without OAI and OABr 2D passivation.

FIG. 3.

(a) J–V curves of best performing devices and (b) EQE and integrated Jsc of the PSCs, with and without OAI and OABr 2D passivation.

Close modal
TABLE I.

Average photovoltaic parameters from J–V characterization of 20 PSCs, with and without the 2D passivation layers. The boldface values denote the parameters of the champion devices.

PCE (%)FF (%)JSC (mA cm-2)VOC (V)
Control 19.44 ± 0.51 (20.26) 80.02 ± 1.52 (82.24) 22.93 ± 0.28 (22.89) 1.06 ± 0.02 (1.08) 
OABr 20.76 ± 0.39 (21.40) 81.10 ± 1.00 (82.97) 23.17 ± 0.28 (23.41) 1.10 ± 0.01 (1.10) 
OAI 20.12 ± 0.43 (20.80) 79.60 ± 1.99 (80.00) 23.13 ± 0.23 (23.55) 1.09 ± 0.01 (1.10) 
PCE (%)FF (%)JSC (mA cm-2)VOC (V)
Control 19.44 ± 0.51 (20.26) 80.02 ± 1.52 (82.24) 22.93 ± 0.28 (22.89) 1.06 ± 0.02 (1.08) 
OABr 20.76 ± 0.39 (21.40) 81.10 ± 1.00 (82.97) 23.17 ± 0.28 (23.41) 1.10 ± 0.01 (1.10) 
OAI 20.12 ± 0.43 (20.80) 79.60 ± 1.99 (80.00) 23.13 ± 0.23 (23.55) 1.09 ± 0.01 (1.10) 

We then investigated whether the OAI and OABr passivation treatment has any effect on the ion migration properties of the PSCs.68 The J–V hysteresis index is shown in Tables S1–S3 for 20 fabricated reference devices, 20 devices with OAI passivation treatment, and 20 devices with OABr passivation treatment. The average hysteresis index as defined in the supplementary material was 0.07, 0.04, and 0.03, for the control, OABr passivated, and OAI passivated PSCs, respectively. These results demonstrate the potential of the octylammonium passivation treatment to mitigate ion migration. Figure 3(b) shows the external quantum efficiency (EQE) spectra for the devices with and without the OABr and OAI passivation layers, as well as the integrated Jsc. The integrated Jsc for the control, OAI-treated, and OABr-treated PSCs was 22.35, 22.68, and 22.47 mA cm−2, respectively, which agrees with the J–V measurements. The 2D/3D perovskite solar cells have a higher EQE than the control one, due to the improvement in film quality after the passivation treatment. The slight difference between the integrated and the calculated Jsc can be attributed to the bigger active area of the EQE and the frequency of 60 Hz, which may cause a different dynamic response to PSCs.69,70

The superior performance of the OABr PSCs, compared to the OAI-treated devices, is confirmed by all the structural, optical, and electronic measurements of the fabricated films and devices. The highest PL intensity of the OABr-treated films, along with the better VOC and FF of the full devices, indicates that OABr provides the most effective passivation of the tested materials, similar to previous studies.47 

To further understand the cause of the improved performance and Voc of the OABr-passivated PSCs, we performed Transient Photovoltage (TPV) and Photocurrent (TPC) measurements to gain insights into the charge carrier recombination and extraction processes. Figure 4(b) shows the normalized TPV decays for the reference and OABr-passivated PSCs under the same illumination. The photovoltage decay for the case of the passivated perovskite film is slower than the reference. The obtained charge carrier lifetime from a single exponential fitting is 2.37 µs for the control device and 2.80 µs for the passivated one. Figure 4(a) presents the obtained charge carrier lifetime as a function of Voc, where the charge carrier lifetimes for the OABr-passivated PSCs are higher than the reference device. The raw data for each decay are shown in Fig. S5. The incorporation of OABr as a passivation layer reduces charge carrier recombination dynamics, which is consistent with the 40 mV enhancement of Voc on average since it is severely affected by non-radiative recombination effects.71 The TPV results are also in agreement with the steady-steady state and TRPL results, revealing the defect passivation of OABr on the perovskite surface. Several molecules have been used for the surface passivation of perovskite films, showing improved Voc and charge carrier lifetimes.72–75 

FIG. 4.

(a) Charge carrier lifetime as a function of voltage, obtained from TPV measurements. (b) Normalized TPV decays under the same illumination and (c) extracted charge density as a function of current density from TPC measurements.

FIG. 4.

(a) Charge carrier lifetime as a function of voltage, obtained from TPV measurements. (b) Normalized TPV decays under the same illumination and (c) extracted charge density as a function of current density from TPC measurements.

Close modal

We then investigated the charge extraction process using high perturbation transient photocurrent measurements with a duty cycle of 0.8. Figure 4(c) demonstrates the extracted charge as a function of current density obtained by the raw data of Fig. S6. Both devices appear to have similar charge extraction capabilities with a slight improvement for OABr-treated PSCs, and therefore, the improved performance mainly originates from the reduced recombination dynamics due to the passivation treatment.

Finally, we evaluated the stability of the reference and the OABr-treated devices by implementing the ISOS D1 protocol. The devices were stored in ambient air (humidity 50%–60%) under dark conditions, without encapsulation. Figure 5 shows the evolution of the PCE for the reference and OABr-treated devices, where the dashed line represents the T80 lifetime. The T80 lifetime for the reference device is about 336 h, whereas the OABr passivated device retains almost 90% of the initial PCE after 500 h of exposure. The degradation of the reference device is evident from Fig. S4, while the OABr devices show no significant visible degradation. The enhanced stability of the passivated devices can be explained by the higher surface hydrophobicity due to the 2D/3D treatment, which prevents humidity insertion while improving the ambient stability, and by the fewer defects at the passivated interface. The stability improvement of the passivated perovskite films is also consistent with the XRD results, where the suppressed δ-FAPbI3 phase is beneficial for the moisture tolerance of the OABr-treated perovskite films.

FIG. 5.

Device lifetime investigation using the ISOS D1 protocol.

FIG. 5.

Device lifetime investigation using the ISOS D1 protocol.

Close modal

In summary, we demonstrated the passivation procedure of perovskite layers in PSCs, by including OABr and OAI as 2D passivation layers between the perovskite and the HTL. This defect passivation strategy enabled a champion device with an efficiency of 21.40% for the case of OABr, exhibiting a Voc value of 1.10 V. The lifetime stability tests indicated that OABr-treated PSCs have extended device stability with enhanced moisture tolerance, compared to the non-treated PSCs. PL and TRPL measurements confirmed an improved charge carrier lifetime as a result of the non-radiative recombination reduction for the case of the 2D passivated devices. Moreover, the transient analysis of the OABr-passivated PSCs by TPV and TPC measurements revealed the suppression of charge carrier recombination processes that led to the improved performance of the targeted devices. Further enhancements in PSC performance and stability can be achieved by exploring more materials as 2D surface passivation layers.

The supplementary material includes the experimental methods, TRPL fitting parameters, tables with all device parameters, XRD patterns, device optimization statistics, MPP tracking graph, a photograph of the devices after stability testing, and TPV and TPC raw data.

This work was supported by European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 881603—GrapheneCore3. P.M. acknowledges the Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH) for providing access to x-ray diffraction measurements.

The authors have no conflicts to disclose.

M.L. and M.T. contributed equally to this work.

Michalis Loizos: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Methodology (equal); Writing – original draft (equal). Marinos Tountas: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Methodology (equal); Writing – original draft (equal). Panagiotis Mangelis: Data curation (supporting); Formal analysis (supporting); Writing – original draft (supporting). Konstantinos Rogdakis: Conceptualization (supporting); Supervision (supporting); Writing – review & editing (lead). Emmanuel Kymakis: Funding acquisition (lead); Supervision (lead); Writing – review & editing (supporting).

The data that support the findings of this study are available within the article and its supplementary material.

1.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
, “
Halide perovskite photovoltaics: Background, status, and future prospects
,”
Chem. Rev.
119
(
5
),
3036
3103
(
2019
).
2.
A. A.
Zhumekenov
,
M. I.
Saidaminov
,
M. A.
Haque
,
E.
Alarousu
,
S. P.
Sarmah
,
B.
Murali
,
I.
Dursun
,
X.-H.
Miao
,
A. L.
Abdelhady
,
T.
Wu
,
O. F.
Mohammed
, and
O. M.
Bakr
, “
Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length
,”
ACS Energy Lett.
1
(
1
),
32
37
(
2016
).
3.
B.
Suarez
,
V.
Gonzalez-Pedro
,
T. S.
Ripolles
,
R. S.
Sanchez
,
L.
Otero
, and
I.
Mora-Sero
, “
Recombination study of combined halides (Cl, Br, I) perovskite solar cells
,”
J. Phys. Chem. Lett.
5
(
10
),
1628
1635
(
2014
).
4.
G. E.
Eperon
,
S. D.
Stranks
,
C.
Menelaou
,
M. B.
Johnston
,
L. M.
Herz
, and
H. J.
Snaith
, “
Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells
,”
Energy Environ. Sci.
7
(
3
),
982
988
(
2014
).
5.
J. Y.
Kim
,
J. W.
Lee
,
H. S.
Jung
,
H.
Shin
, and
N. G.
Park
, “
High-efficiency perovskite solar cells
,”
Chem. Rev.
120
(
15
),
7867
7918
(
2020
).
6.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
(
17
),
6050
6051
(
2009
).
7.
J. J.
Yoo
,
G.
Seo
,
M. R.
Chua
,
T. G.
Park
,
Y.
Lu
,
F.
Rotermund
,
Y.-K.
Kim
,
C. S.
Moon
,
N. J.
Jeon
,
J.-P.
Correa-Baena
,
V.
Bulović
,
S. S.
Shin
,
M. G.
Bawendi
, and
J.
Seo
, “
Efficient perovskite solar cells via improved carrier management
,”
Nature
590
(
7847
),
587
593
(
2021
).
8.
J.
Jeong
,
M.
Kim
,
J.
Seo
,
H.
Lu
,
P.
Ahlawat
,
A.
Mishra
,
Y.
Yang
,
M. A.
Hope
,
F. T.
Eickemeyer
,
M.
Kim
,
Y. J.
Yoon
,
I. W.
Choi
,
B. P.
Darwich
,
S. J.
Choi
,
Y.
Jo
,
J. H.
Lee
,
B.
Walker
,
S. M.
Zakeeruddin
,
L.
Emsley
,
U.
Rothlisberger
,
A.
Hagfeldt
,
D. S.
Kim
,
M.
Grätzel
, and
J. Y.
Kim
, “
Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
,”
Nature
592
(
7854
),
381
385
(
2021
).
9.
Q.
Jiang
,
J.
Tong
,
Y.
Xian
,
R. A.
Kerner
,
S. P.
Dunfield
,
C.
Xiao
,
R. A.
Scheidt
,
D.
Kuciauskas
,
X.
Wang
,
M. P.
Hautzinger
,
R.
Tirawat
,
M. C.
Beard
,
D. P.
Fenning
,
J. J.
Berry
,
B. W.
Larson
,
Y.
Yan
, and
K.
Zhu
, “
Surface reaction for efficient and stable inverted perovskite solar cells
,”
Nature
611
(
7935
),
278
283
(
2022
).
10.
H.
Min
,
D. Y.
Lee
,
J.
Kim
,
G.
Kim
,
K. S.
Lee
,
J.
Kim
,
M. J.
Paik
,
Y. K.
Kim
,
K. S.
Kim
,
M. G.
Kim
,
T. J.
Shin
, and
S.
Il Seok
, “
Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes
,”
Nature
598
(
7881
),
444
450
(
2021
).
11.
C.
Ma
and
N.-G.
Park
, “
A realistic methodology for 30% efficient perovskite solar cells
,”
Chem
6
(
6
),
1254
1264
(
2020
).
12.
J.
Diekmann
,
P.
Caprioglio
,
M. H.
Futscher
,
V. M.
Le Corre
,
S.
Reichert
,
F.
Jaiser
,
M.
Arvind
,
L. P.
Toro
,
E.
Gutierrez-Partida
,
F.
Peña-Camargo
,
C.
Deibel
,
B.
Ehrler
,
T.
Unold
,
T.
Kirchartz
,
D.
Neher
, and
M.
Stolterfoht
, “
Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ions
,”
Solar RRL
5
(
8
),
2100219
(
2021
).
13.
D.
Luo
,
W.
Yang
,
Z.
Wang
,
A.
Sadhanala
,
Q.
Hu
,
R.
Su
,
R.
Shivanna
,
G. F.
Trindade
,
J. F.
Watts
,
Z.
Xu
,
T.
Liu
,
K.
Chen
,
F.
Ye
,
P.
Wu
,
L.
Zhao
,
J.
Wu
,
Y.
Tu
,
Y.
Zhang
,
X.
Yang
,
W.
Zhang
,
R. H.
Friend
,
Q.
Gong
,
H. J.
Snaith
, and
R.
Zhu
, “
Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
,”
Science
360
(
6396
),
1442
1446
(
2018
).
14.
R.
Wang
,
M.
Mujahid
,
Y.
Duan
,
Z. K.
Wang
,
J.
Xue
, and
Y.
Yang
, “
A review of perovskites solar cell stability
,”
Adv. Funct. Mater.
29
(
47
),
1808843
(
2019
).
15.
S.
Pescetelli
,
A.
Agresti
,
G.
Viskadouros
,
S.
Razza
,
K.
Rogdakis
,
I.
Kalogerakis
,
E.
Spiliarotis
,
E.
Leonardi
,
P.
Mariani
,
L.
Sorbello
,
M.
Pierro
,
C.
Cornaro
,
S.
Bellani
,
L.
Najafi
,
B.
Martín-García
,
A. E.
Del Rio Castillo
,
R.
Oropesa-Nuñez
,
M.
Prato
,
S.
Maranghi
,
M. L.
Parisi
,
A.
Sinicropi
,
R.
Basosi
,
F.
Bonaccorso
,
E.
Kymakis
, and
A.
Di Carlo
, “
Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm
,”
Nat. Energy
7
(
7
),
597
607
(
2022
).
16.
F.
Gao
,
Y.
Zhao
,
X.
Zhang
, and
J.
You
, “
Recent progresses on defect passivation toward efficient perovskite solar cells
,”
Adv. Energy Mater.
10
(
13
),
1902650
(
2020
).
17.
A.
Buin
,
P.
Pietsch
,
J.
Xu
,
O.
Voznyy
,
A. H.
Ip
,
R.
Comin
, and
E. H.
Sargent
, “
Materials processing routes to trap-free halide perovskites
,”
Nano Lett.
14
(
11
),
6281
6286
(
2014
).
18.
H.
Tan
,
A.
Jain
,
O.
Voznyy
,
X.
Lan
,
F. P.
García de Arquer
,
J. Z.
Fan
,
R.
Quintero-Bermudez
,
M.
Yuan
,
B.
Zhang
,
Y.
Zhao
,
F.
Fan
,
P.
Li
,
L. N.
Quan
,
Y.
Zhao
,
Z.-H.
Lu
,
Z.
Yang
,
S.
Hoogland
, and
E. H.
Sargent
, “
Efficient and stable solution-processed planar perovskite solar cells via contact passivation
,”
Science
355
(
6326
),
722
726
(
2017
).
19.
D.
Luo
,
R.
Su
,
W.
Zhang
,
Q.
Gong
, and
R.
Zhu
, “
Minimizing non-radiative recombination losses in perovskite solar cells
,”
Nat. Rev. Mater.
5
(
1
),
44
60
(
2020
).
20.
J.
Warby
,
F.
Zu
,
S.
Zeiske
,
E.
Gutierrez‐Partida
,
L.
Frohloff
,
S.
Kahmann
,
K.
Frohna
,
E.
Mosconi
,
E.
Radicchi
,
F.
Lang
,
S.
Shah
,
F.
Peña‐Camargo
,
H.
Hempel
,
T.
Unold
,
N.
Koch
,
A.
Armin
,
F.
De Angelis
,
S. D.
Stranks
,
D.
Neher
, and
M.
Stolterfoht
, “
Understanding performance limiting interfacial recombination in pin perovskite solar cells
,”
Adv. Energy Mater.
12
(
12
),
2103567
(
2022
).
21.
W.
Dong
,
W.
Qiao
,
S.
Xiong
,
J.
Yang
,
X.
Wang
,
L.
Ding
,
Y.
Yao
, and
Q.
Bao
, “
Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells
,”
Nano-Micro Lett.
14
(
1
),
108
(
2022
).
22.
F.
Zhang
,
C.
Xiao
,
X.
Chen
,
B. W.
Larson
,
S. P.
Harvey
,
J. J.
Berry
, and
K.
Zhu
, “
Self-seeding growth for perovskite solar cells with enhanced stability
,”
Joule
3
(
6
),
1452
1463
(
2019
).
23.
M.
Wang
,
H.
Sun
,
M.
Wang
, and
L.
Li
, “
Understanding the ‘double-edged-sword’ effect of dimethyl sulfoxide to guide the design of highly efficient perovskite solar cells in humid air
,”
Nano Today
42
,
101371
(
2022
).
24.
N.
Li
,
S.
Tao
,
Y.
Chen
,
X.
Niu
,
C. K.
Onwudinanti
,
C.
Hu
,
Z.
Qiu
,
Z.
Xu
,
G.
Zheng
,
L.
Wang
,
Y.
Zhang
,
L.
Li
,
H.
Liu
,
Y.
Lun
,
J.
Hong
,
X.
Wang
,
Y.
Liu
,
H.
Xie
,
Y.
Gao
,
Y.
Bai
,
S.
Yang
,
G.
Brocks
,
Q.
Chen
, and
H.
Zhou
, “
Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells
,”
Nat. Energy
4
(
5
),
408
415
(
2019
).
25.
D.-Y.
Son
,
S.-G.
Kim
,
J.-Y.
Seo
,
S.-H.
Lee
,
H.
Shin
,
D.
Lee
, and
N.-G.
Park
, “
Universal approach toward hysteresis-free perovskite solar cell via defect engineering
,”
J. Am. Chem. Soc.
140
(
4
),
1358
1364
(
2018
).
26.
T. S.
Su
,
F. T.
Eickemeyer
,
M. A.
Hope
,
F.
Jahanbakhshi
,
M.
Mladenović
,
J.
Li
,
Z.
Zhou
,
A.
Mishra
,
J. H.
Yum
,
D.
Ren
,
A.
Krishna
,
O.
Ouellette
,
T. C.
Wei
,
H.
Zhou
,
H. H.
Huang
,
M. D.
Mensi
,
K.
Sivula
,
S. M.
Zakeeruddin
,
J. V.
Milić
,
A.
Hagfeldt
,
U.
Rothlisberger
,
L.
Emsley
,
H.
Zhang
, and
M.
Grätzel
, “
Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells
,”
J. Am. Chem. Soc.
142
(
47
),
19980
19991
(
2020
).
27.
Q.
Jiang
,
Z.
Ni
,
G.
Xu
,
Y.
Lin
,
P. N.
Rudd
,
R.
Xue
,
Y.
Li
,
Y.
Li
,
Y.
Gao
, and
J.
Huang
, “
Interfacial molecular doping of metal halide perovskites for highly efficient solar cells
,”
Adv. Mater.
32
(
31
),
2001581
(
2020
).
28.
M.
Degani
,
Q.
An
,
M.
Albaladejo-Siguan
,
Y. J.
Hofstetter
,
C.
Cho
,
F.
Paulus
,
G.
Grancini
, and
Y.
Vaynzof
, “
23.7% efficient inverted perovskite solar cells by dual interfacial modification
,”
Sci. Adv.
7
(
49
),
eabj7930
(
2021
).
29.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
,
X.
Yang
,
Y.
Chen
,
Z.
Chu
,
Q.
Ye
,
X.
Li
,
Z.
Yin
, and
J.
You
, “
Surface passivation of perovskite film for efficient solar cells
,”
Nat. Photonics
13
(
7
),
460
466
(
2019
).
30.
F.
Li
,
X.
Deng
,
F.
Qi
,
Z.
Li
,
D.
Liu
,
D.
Shen
,
M.
Qin
,
S.
Wu
,
F.
Lin
,
S. H.
Jang
,
J.
Zhang
,
X.
Lu
,
D.
Lei
,
C. S.
Lee
,
Z.
Zhu
, and
A. K.
Jen
, “
Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency
,”
J. Am. Chem. Soc.
142
(
47
),
20134
20142
(
2020
).
31.
H.
Zhu
,
Y.
Liu
,
F. T.
Eickemeyer
,
L.
Pan
,
D.
Ren
,
M. A.
Ruiz-Preciado
,
B.
Carlsen
,
B.
Yang
,
X.
Dong
,
Z.
Wang
,
H.
Liu
,
S.
Wang
,
S. M.
Zakeeruddin
,
A.
Hagfeldt
,
M. I.
Dar
,
X.
Li
, and
M.
Grätzel
, “
Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency
,”
Adv. Mater.
32
(
12
),
e1907757
(
2020
).
32.
M. A.
Mahmud
,
T.
Duong
,
J.
Peng
,
Y.
Wu
,
H.
Shen
,
D.
Walter
,
H. T.
Nguyen
,
N.
Mozaffari
,
G. D.
Tabi
,
K. R.
Catchpole
,
K. J.
Weber
, and
T. P.
White
, “
Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: A review
,”
Adv. Funct. Mater.
32
(
3
),
2009164
(
2022
).
33.
L.
Gao
,
I.
Spanopoulos
,
W.
Ke
,
S.
Huang
,
I.
Hadar
,
L.
Chen
,
X.
Li
,
G.
Yang
, and
M. G.
Kanatzidis
, “
Improved environmental stability and solar cell efficiency of (MA,FA)PbI3 perovskite using a wide-band-gap 1D thiazolium lead iodide capping layer strategy
,”
ACS Energy Lett.
4
(
7
),
1763
1769
(
2019
).
34.
M. T.
Sirtl
,
R.
Hooijer
,
M.
Armer
,
F. G.
Ebadi
,
M.
Mohammadi
,
C.
Maheu
,
A.
Weis
,
B. T.
van Gorkom
,
S.
Häringer
,
R. A. J.
Janssen
,
T.
Mayer
,
V.
Dyakonov
,
W.
Tress
, and
T.
Bein
, “
2D/3D hybrid Cs2AgBiBr6 double perovskite solar cells: Improved energy level alignment for higher contact-selectivity and large open circuit voltage
,”
Adv. Energy Mater.
12
(
7
),
2103215
(
2022
).
35.
C. C.
Stoumpos
,
D. H.
Cao
,
D. J.
Clark
,
J.
Young
,
J. M.
Rondinelli
,
J. I.
Jang
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors
,”
Chem. Mater.
28
(
8
),
2852
2867
(
2016
).
36.
L.
Mao
,
W.
Ke
,
L.
Pedesseau
,
Y.
Wu
,
C.
Katan
,
J.
Even
,
M. R.
Wasielewski
,
C. C.
Stoumpos
, and
M. G.
Kanatzidis
, “
Hybrid Dion–Jacobson 2D lead iodide perovskites
,”
J. Am. Chem. Soc.
140
(
10
),
3775
3783
(
2018
).
37.
C. C.
Boyd
,
R.
Cheacharoen
,
T.
Leijtens
, and
M. D.
McGehee
, “
Understanding degradation mechanisms and improving stability of perovskite photovoltaics
,”
Chem. Rev.
119
(
5
),
3418
3451
(
2019
).
38.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis-Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
, “
A layered hybrid perovskite solar-cell absorber with enhanced moisture stability
,”
Angew. Chem., Int. Ed.
53
(
42
),
11232
11235
(
2014
).
39.
D. H.
Cao
,
C. C.
Stoumpos
,
O. K.
Farha
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
2D homologous perovskites as light-absorbing materials for solar cell applications
,”
J. Am. Chem. Soc.
137
(
24
),
7843
7850
(
2015
).
40.
H.
Xu
,
G.
Liu
,
X.
Xu
,
S.
Xu
,
L.
Zhang
,
X.
Chen
,
H.
Zheng
, and
X.
Pan
, “
Hydrophobic 2D perovskite-modified layer with polyfunctional groups for enhanced performance and high moisture stability of perovskite solar cells
,”
Solar RRL
4
(
12
),
2000647
(
2020
).
41.
A. A.
Sutanto
,
P.
Caprioglio
,
N.
Drigo
,
Y. J.
Hofstetter
,
I.
Garcia-Benito
,
V. I. E.
Queloz
,
D.
Neher
,
M. K.
Nazeeruddin
,
M.
Stolterfoht
,
Y.
Vaynzof
, and
G.
Grancini
, “
2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells
,”
Chem
7
(
7
),
1903
1916
(
2021
).
42.
P.
Chen
,
Y.
Bai
,
S.
Wang
,
M.
Lyu
,
J. H.
Yun
, and
L.
Wang
, “
In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells
,”
Adv. Funct. Mater.
28
(
17
),
1706923
(
2018
).
43.
Y.
Wang
,
H.
Xu
,
F.
Wang
,
D.
Liu
,
H.
Chen
,
H.
Zheng
,
L.
Ji
,
P.
Zhang
,
T.
Zhang
,
Z. D.
Chen
,
J.
Wu
,
L.
Chen
, and
S.
Li
, “
Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D-3D perovskite solar cells through sequential deposition process
,”
Chem. Eng. J.
391
,
123589
(
2020
).
44.
Y.
Feng
,
R.
Liu
,
F.
Li
,
M.
Jin
,
Q.
Du
,
Y.
Rong
,
H.
Hu
,
M.
Wang
,
Y.
Li
,
Z.
Shen
,
Y.
Liu
,
H.
Li
, and
C.
Chen
, “
A synergistic co-passivation strategy for high-performance perovskite solar cells with large open circuit voltage
,”
J. Mater. Chem. C
10
(
35
),
12699
12707
(
2022
).
45.
S.
Wu
,
Z.
Li
,
J.
Zhang
,
T.
Liu
,
Z.
Zhu
, and
A. K.-Y.
Jen
, “
Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses
,”
Chem. Commun.
55
(
30
),
4315
4318
(
2019
).
46.
N.
Mozaffari
,
T.
Duong
,
M. M.
Shehata
,
A. D.
Bui
,
H. T.
Pham
,
Y.
Yin
,
Y. O.
Mayon
,
J.
Zheng
,
M. A.
Mahmud
,
G. D.
Tabi
,
G. G.
Andersson
,
L. E.
Black
,
J.
Peng
,
H.
Shen
,
T. P.
White
,
K.
Weber
, and
K. R.
Catchpole
, “
Above 23% efficiency by binary surface passivation of perovskite solar cells using guanidinium and octylammonium spacer cations
,”
Solar RRL
6
(
8
),
2200355
(
2022
).
47.
M. A.
Mahmud
,
H. T.
Pham
,
T.
Duong
,
Y.
Yin
,
J.
Peng
,
Y.
Wu
,
W.
Liang
,
L.
Li
,
A.
Kumar
,
H.
Shen
,
D.
Walter
,
H. T.
Nguyen
,
N.
Mozaffari
,
G. D.
Tabi
,
G.
Andersson
,
K. R.
Catchpole
,
K. J.
Weber
, and
T. P.
White
, “
Combined bulk and surface passivation in dimensionally engineered 2D-3D perovskite films via chlorine diffusion
,”
Adv. Funct. Mater.
31
(
46
),
2104251
(
2021
).
48.
M.
Abuhelaiqa
,
X.-X.
Gao
,
Y.
Ding
,
B.
Ding
,
Z.
Yi
,
M.
Sohail
,
H.
Kanda
,
P. J.
Dyson
, and
M. K.
Nazeeruddin
, “
Mixed cation 2D perovskite: A novel approach for enhanced perovskite solar cell stability
,”
Sustainable Energy Fuels
6
(
10
),
2471
2477
(
2022
).
49.
H.
Kim
,
S. U.
Lee
,
D. Y.
Lee
,
M. J.
Paik
,
H.
Na
,
J.
Lee
, and
S. I.
Seok
, “
Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells
,”
Adv. Energy Mater.
9
(
47
),
1902740
(
2019
).
50.
T. M.
Koh
,
V.
Shanmugam
,
X.
Guo
,
S. S.
Lim
,
O.
Filonik
,
E. M.
Herzig
,
P.
Müller-Buschbaum
,
V.
Swamy
,
S. T.
Chien
,
S. G.
Mhaisalkar
, and
N.
Mathews
, “
Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics
,”
J. Mater. Chem. A
6
(
5
),
2122
2128
(
2018
).
51.
S. M.
Yoon
,
H.
Min
,
J. B.
Kim
,
G.
Kim
,
K. S.
Lee
, and
S. I.
Seok
, “
Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells
,”
Joule
5
(
1
),
183
196
(
2021
).
52.
Z.
Zheng
,
F.
Li
,
J.
Gong
,
Y.
Ma
,
J.
Gu
,
X.
Liu
,
S.
Chen
, and
M.
Liu
, “
Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%
,”
Adv. Mater.
34
(
21
),
2109879
(
2022
).
53.
J. J.
Yoo
,
S.
Wieghold
,
M. C.
Sponseller
,
M. R.
Chua
,
S. N.
Bertram
,
N. T. P.
Hartono
,
J. S.
Tresback
,
E. C.
Hansen
,
J.-P.
Correa-Baena
,
V.
Bulović
,
T.
Buonassisi
,
S. S.
Shin
, and
M. G.
Bawendi
, “
An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss
,”
Energy Environ. Sci.
12
(
7
),
2192
2199
(
2019
).
54.
F.
Yang
,
L.
Dong
,
D.
Jang
,
K. C.
Tam
,
K.
Zhang
,
N.
Li
,
F.
Guo
,
C.
Li
,
C.
Arrive
,
M.
Bertrand
,
C. J.
Brabec
, and
H. J.
Egelhaaf
, “
Fully solution processed pure α-phase formamidinium lead iodide perovskite solar cells for scalable production in ambient condition
,”
Adv. Energy Mater.
10
(
42
),
2001869
(
2020
).
55.
H.
Min
,
M.
Kim
,
S.-U.
Lee
,
H.
Kim
,
G.
Kim
,
K.
Choi
,
J. H.
Lee
, and
S. I.
Seok
, “
Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide
,”
Science
366
(
6466
),
749
753
(
2019
).
56.
K.
Wang
,
B.
Yu
,
C.
Lin
,
R.
Yao
,
Z.
Nie
,
H.
Wang
, and
H.
Yu
, “
Multifunctional modifications based on carbonyl material enhanced performance of perovskite solar cells
,”
Solar RRL
6
(
12
),
2200862
(
2022
).
57.
L.
Zhang
,
J.
Gao
,
Z.
You
,
Q.
Li
,
M.
Liu
,
Z.
Ma
, and
Y.
Liu
, “
A multifunctional phosphorylcholine-based polymer reduces energy loss for efficient perovskite solar cells
,”
J. Mater. Chem. C
10
(
44
),
16781
16788
(
2022
).
58.
F.
Qiu
,
J.
Sun
,
H.
Liu
, and
J.
Qi
, “
Cesium trifluoroacetate induced synergistic effects of grain growth and defect passivation on high-performance perovskite solar cells
,”
Chem. Eng. J.
446
,
136936
(
2022
).
59.
X.
Wang
,
W.
Sun
,
Y.
Tu
,
Q.
Xiong
,
G.
Li
,
Z.
Song
,
Y.
Wang
,
Y.
Du
,
Q.
Chen
,
C.
Deng
,
Z.
Lan
,
P.
Gao
, and
J.
Wu
, “
Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%
,”
Chem. Eng. J.
446
,
137416
(
2022
).
60.
W.
Chen
,
N. D.
Pham
,
H.
Wang
,
B.
Jia
, and
X.
Wen
, “
Spectroscopic insight into efficient and stable hole transfer at the perovskite/spiro-OMeTAD interface with alternative additives
,”
ACS Appl. Mater. Interfaces
13
(
4
),
5752
5761
(
2021
).
61.
P.
Jia
,
L.
Qin
,
D.
Zhao
,
Y.
Tang
,
B.
Song
,
J.
Guo
,
X.
Li
,
L.
Li
,
Q.
Cui
,
Y.
Hu
,
Z.
Lou
,
F.
Teng
, and
Y.
Hou
, “
The trapped charges at grain boundaries in perovskite solar cells
,”
Adv. Funct. Mater.
31
(
49
),
2107125
(
2021
).
62.
M.
Xia
,
Y.
Xia
,
Z.
Zheng
,
X.
Chen
,
J.
Yang
,
J.
Du
,
A.
Mei
,
Y.
Hu
, and
H.
Han
, “
Defect passivation by a sulfur-containing Lewis base for efficient printable mesoscopic perovskite solar cells
,”
Solar RRL
6
(
12
),
2200802
(
2022
).
63.
X.
Zheng
,
Y.
Hou
,
C.
Bao
,
J.
Yin
,
F.
Yuan
,
Z.
Huang
,
K.
Song
,
J.
Liu
,
J.
Troughton
,
N.
Gasparini
,
C.
Zhou
,
Y.
Lin
,
D.-J.
Xue
,
B.
Chen
,
A. K.
Johnston
,
N.
Wei
,
M. N.
Hedhili
,
M.
Wei
,
A. Y.
Alsalloum
,
P.
Maity
,
B.
Turedi
,
C.
Yang
,
D.
Baran
,
T. D.
Anthopoulos
,
Y.
Han
,
Z.-H.
Lu
,
O. F.
Mohammed
,
F.
Gao
,
E. H.
Sargent
, and
O. M.
Bakr
, “
Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
,”
Nat. Energy
5
(
2
),
131
140
(
2020
).
64.
T.
Zhou
,
Z.
Xu
,
R.
Wang
,
X.
Dong
,
Q.
Fu
, and
Y.
Liu
, “
Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability
,”
Adv. Mater.
34
(
17
),
2200705
(
2022
).
65.
B.
Wu
,
H. T.
Nguyen
,
Z.
Ku
,
G.
Han
,
D.
Giovanni
,
N.
Mathews
,
H. J.
Fan
, and
T. C.
Sum
, “
Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals
,”
Adv. Energy Mater.
6
(
14
),
1600551
(
2016
).
66.
Y.
Liu
,
S.
Akin
,
L.
Pan
,
R.
Uchida
,
N.
Arora
,
J. V.
Milić
,
A.
Hinderhofer
,
F.
Schreiber
,
A. R.
Uhl
,
S. M.
Zakeeruddin
,
A.
Hagfeldt
,
M. I.
Dar
, and
M.
Grätzel
, “
Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%
,”
Sci. Adv.
5
(
6
),
eaaw2543
(
2019
).
67.
M. A.
Mahmud
,
T.
Duong
,
Y.
Yin
,
H. T.
Pham
,
D.
Walter
,
J.
Peng
,
Y.
Wu
,
L.
Li
,
H.
Shen
,
N.
Wu
,
N.
Mozaffari
,
G.
Andersson
,
K. R.
Catchpole
,
K. J.
Weber
, and
T. P.
White
, “
Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells
,”
Adv. Funct. Mater.
30
(
7
),
1907962
(
2020
).
68.
G.
Tumen-Ulzii
,
T.
Matsushima
,
D.
Klotz
,
M. R.
Leyden
,
P.
Wang
,
C.
Qin
,
J.-W.
Lee
,
S.-J.
Lee
,
Y.
Yang
, and
C.
Adachi
, “
Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer
,”
Commun. Mater.
1
(
1
),
31
(
2020
).
69.
S.
Ravishankar
,
C.
Aranda
,
P. P.
Boix
,
J. A.
Anta
,
J.
Bisquert
, and
G.
Garcia-Belmonte
, “
Effects of frequency dependence of the external quantum efficiency of perovskite solar cells
,”
J. Phys. Chem. Lett.
9
(
11
),
3099
3104
(
2018
).
70.
M.
Saliba
and
L.
Etgar
, “
Current density mismatch in perovskite solar cells
,”
ACS Energy Lett.
5
(
9
),
2886
2888
(
2020
).
71.
Z.
Guo
,
A. K.
Jena
,
G. M.
Kim
, and
T.
Miyasaka
, “
The high open-circuit voltage of perovskite solar cells: A review
,”
Energy Environ. Sci.
15
(
8
),
3171
3222
(
2022
).
72.
C. L.
Mai
,
Q.
Zhou
,
Q.
Xiong
,
C. C.
Chen
,
J.
Xu
,
Z.
Zhang
,
H. W.
Lee
,
C. Y.
Yeh
, and
P.
Gao
, “
Donor–π–acceptor type porphyrin derivatives assisted defect passivation for efficient hybrid perovskite solar cells
,”
Adv. Funct. Mater.
31
(
7
),
2007762
(
2021
).
73.
Z.
Yang
,
J.
Dou
,
S.
Kou
,
J.
Dang
,
Y.
Ji
,
G.
Yang
,
W. Q.
Wu
,
D. B.
Kuang
, and
M.
Wang
, “
Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells
,”
Adv. Funct. Mater.
30
(
15
),
1910710
(
2020
).
74.
B.
Liu
,
H.
Bi
,
D.
He
,
L.
Bai
,
W.
Wang
,
H.
Yuan
,
Q.
Song
,
P.
Su
,
Z.
Zang
,
T.
Zhou
, and
J.
Chen
, “
Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells
,”
ACS Energy Lett.
6
(
7
),
2526
2538
(
2021
).
75.
H.
Li
,
J.
Shi
,
J.
Deng
,
Z.
Chen
,
Y.
Li
,
W.
Zhao
,
J.
Wu
,
H.
Wu
,
Y.
Luo
,
D.
Li
, and
Q.
Meng
, “
Intermolecular π–π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells
,”
Adv. Mater.
32
(
23
),
1907396
(
2020
).

Supplementary Material