Skip Nav Destination
In-memory and in-sensor reservoir computing with memristive devices
Training self-learning circuits for power-efficient solutions
Accelerating defect predictions in semiconductors using graph neural networks
Issues
PERSPECTIVES
In-memory and in-sensor reservoir computing with memristive devices
APL Mach. Learn. 2, 010901 (2024)
https://doi.org/10.1063/5.0174863
A unifying perspective on non-stationary kernels for deeper Gaussian processes
APL Mach. Learn. 2, 010902 (2024)
https://doi.org/10.1063/5.0176963
ARTICLES
Learning thermodynamically constrained equations of state with uncertainty
APL Mach. Learn. 2, 016102 (2024)
https://doi.org/10.1063/5.0165298
A deep learning approach for gas sensor data regression: Incorporating surface state model and GRU-based model
In Special Collection:
2023 Papers with Best Practices in Data Sharing and Comprehensive Background Review
APL Mach. Learn. 2, 016104 (2024)
https://doi.org/10.1063/5.0160983
Prediction and control of spatiotemporal chaos by learning conjugate tubular neighborhoods
APL Mach. Learn. 2, 016105 (2024)
https://doi.org/10.1063/5.0181022
Digitizing images of electrical-circuit schematics
APL Mach. Learn. 2, 016109 (2024)
https://doi.org/10.1063/5.0177755
Completeness of atomic structure representations
APL Mach. Learn. 2, 016110 (2024)
https://doi.org/10.1063/5.0160740
Predicting wind farm wake losses with deep convolutional hierarchical encoder–decoder neural networks
APL Mach. Learn. 2, 016111 (2024)
https://doi.org/10.1063/5.0168973
Training self-learning circuits for power-efficient solutions
APL Mach. Learn. 2, 016114 (2024)
https://doi.org/10.1063/5.0181382
Physics-agnostic inverse design using transfer matrices
APL Mach. Learn. 2, 016115 (2024)
https://doi.org/10.1063/5.0179457
Measuring thermal profiles in high explosives using neural networks
APL Mach. Learn. 2, 016116 (2024)
https://doi.org/10.1063/5.0183886
Improving the mechanical properties of Cantor-like alloys with Bayesian optimization
APL Mach. Learn. 2, 016119 (2024)
https://doi.org/10.1063/5.0179844
Autonomous convergence of STM control parameters using Bayesian optimization
APL Mach. Learn. 2, 016121 (2024)
https://doi.org/10.1063/5.0185362
Accelerating defect predictions in semiconductors using graph neural networks
Md Habibur Rahman; Prince Gollapalli; Panayotis Manganaris; Satyesh Kumar Yadav; Ghanshyam Pilania; Brian DeCost; Kamal Choudhary; Arun Mannodi-Kanakkithodi
APL Mach. Learn. 2, 016122 (2024)
https://doi.org/10.1063/5.0176333
ERRATA
Erratum: “Learning the stable and metastable phase diagram to accelerate the discovery of metastable phases of boron” [APL Mach. Learn. 2, 016103 (2024)]
Karthik Balasubramanian; Suvo Banik; Sukriti Manna; Srilok Srinivasan; Subramanian K. R. S. Sankaranarayanan
APL Mach. Learn. 2, 019901 (2024)
https://doi.org/10.1063/5.0198511
A tutorial on the Bayesian statistical approach to inverse problems
Faaiq G. Waqar, Swati Patel, et al.
Brain-inspired learning in artificial neural networks: A review
Samuel Schmidgall, Rojin Ziaei, et al.
In-memory computing with emerging memory devices: Status and outlook
P. Mannocci, M. Farronato, et al.