Strongly-correlated electron states emerging in cubic Sm-based compounds, e.g., SmOs4Sb12 and Sm Tr2Al20 (Tr: transition metal elements), have anomalous characteristics, like magnetic-field-insensitive heavy-fermion behaviors and strongly mixed valence of Sm ions. In this paper, we compare key physical parameters of these compounds. The results reveal the existence of the following novel features: (i) the electronic specific heat coefficient γ shows a significant inverse correlation with the effective magnetic moment μeff (γ1/μeff2), and (ii) largely enhanced γ appears in intermediate Sm valance states around ∼ +2.8. Other remarkable features are the absence of enhanced Pauli paramagnetism at low temperatures and largely suppressed μeff (down to ∼0.1 μB). These are quite different from those of Ce-based heavy-fermion compounds, pointing to an unconventional mechanism for the formation of Sm-based heavy quasiparticles, possibly caused by complex hybridization processes associated with multi-4 f-electrons of a Sm ion.

Recent studies on strongly-correlated electron states emerging in cubic Sm-based compounds, e.g., SmOs4Sb121 and Sm Tr2Al20 (Tr: transition metal elements),2–4 have revealed that these compounds form a unique class of heavy fermion (HF) systems. The resistivity of Sm Tr2Al20 shows a clear −log T dependence, suggesting the occurrence of Kondo effect.2–4 The −log T dependence of the resistivity remains even in a La-diluted compound Sm0.01La0.99Ta2Al20. This finding provides clear evidence that it is caused by a local single-ion Kondo effect.5 Large values of the electronic specific heat coefficient γ, e.g., 820 mJ/mol K2 for SmOs4Sb12 and 150, 720, 1000, and 3200 mJ/mol K2 for Sm Tr2Al20 with Ti, V, Cr, and Ta, respectively, reflect the formation of heavy quasiparticles at low temperatures. Surprisingly, the −log T dependences of the resistivity and the enhanced γ values are insensitive to applied magnetic fields in many of the cubic Sm-based compounds. In addition, it has been found that Sm ions in these compounds are in strongly mixed valence states. The Sm valence vSm determined by x-ray absorption spectroscopy (XAS) in SmOs4Sb12 (vSm = +2.84 at RT) shows a log T dependence, indicating that the valence change is caused by an unconventional Kondo effect (the associated Kondo temperature is 56 K).6,7 The log T dependent behavior remains down to the Sm concentration x = 0.2 in (SmxLa1−x)Os4Sb12. This finding suggests that the Kondo effect has a local single-site nature. Sm Tr2Al20 compounds also have intermediate valence states although they show no clear temperature dependence.5,8 These behaviors, which are in marked contrast to those of Ce-based HF systems, suggest strongly that the formation of heavy quasiparticles in Sm-based compounds involves unconventional nonmagnetic mechanisms probably associated with Sm 4f-electron charge degrees of freedom.

The electronic level schemes of Sm2+ and Sm3+ ions in cubic point symmetry are schematically shown in Fig. 1 in the LS coupling regime. Sm2+ has a nonmagnetic ground state (the total angular momentum J = 0) and a magnetic first excited state (J = 1) at the excitation energy of ∼420 K, which is comparable with the thermal energy at RT and therefore leads to Van Vleck paramagnetism. Sm3+ has a magnetic ground state (J = 5/2), which splits into a Γ7 doublet and a Γ8 quartet due to the cubic crystalline-electric-field (CEF) effect. The Γ7 state has a magnetic dipole and the Γ8 state has a magnetic dipole, electric quadrupoles and magnetic octupoles.9 Therefore, not only charge degrees of freedom (the Sm-ion valence) but also multipole degrees of freedom are expected to play essential roles for the realization of the unconventional Kondo effect and the field-insensitive HF states in Sm-based compounds (the difference in the effective ionic radius between Sm3+ and Sm2+ suggests possible involvement of phonon degrees of freedom). In this paper, we compare some of the key physical parameters of the cubic Sm-based compounds to extract characteristic features of the Sm-based strongly-correlated electron states.

FIG. 1.

The energy level scheme of trivalent and divalent Sm ions in cubic point symmetry (in the LS coupling regime).10 The 6H5/2 ground-state multiplet of Sm3+ splits into a Γ7 doublet and a Γ8 quartet due to the cubic CEF effect. The ground state of Sm2+ is a nonmagnetic singlet 7F0. The degeneracy of each state is shown in the parentheses.

FIG. 1.

The energy level scheme of trivalent and divalent Sm ions in cubic point symmetry (in the LS coupling regime).10 The 6H5/2 ground-state multiplet of Sm3+ splits into a Γ7 doublet and a Γ8 quartet due to the cubic CEF effect. The ground state of Sm2+ is a nonmagnetic singlet 7F0. The degeneracy of each state is shown in the parentheses.

Close modal

In Table I, we summarize some of the key physical parameters of cubic Sm-based intermetallic compounds, i.e., the lattice constant a, Néel temperature TN or Curie temperature TC of magnetic orderings, Weiss temperature θCW and the effective magnetic moment μeff along with the temperature range for the Curie-Weiss (CW) fitting, the electronic specific-heat coefficient γ, Sm valence vSm determined by XAS, CEF splitting energy, and CEF ground state (GS).1–8,11–57 For compounds that show magnetic orderings, γ values were estimated from C4f/T vs T data (C4f: 4 f electron contribution to the specific heat) at temperatures lower than 1/10 of their magnetic transition temperatures.

TABLE I.

Physical parameters of cubic Sm-based intermetallic compounds: the lattice constant a, Néel temperature TN or Curie temperature TC of magnetic orderings, Weiss temperature θCW and the effective magnetic moment μeff along with the temperature range for the Curie-Weiss fitting (χμeff2/(TθCW)), the electronic specific-heat coefficient γ, Sm valence vSm determined by XAS, CEF splitting energy, and CEF GS. In filled skutterudites, Sm ions sitting at a Th symmetry site have a doublet Γ5 and a quartet Γ67. Values with asterisk (*) have been obtained from the reported figures.

Sm-based a TN TC θCW μeff CW fit range γ CEF
Compounds (Å) (K) (K) (K) (μB) (K) (mJ/K2mol) v Sm (K) GS Ref.
SmFe4P12  7.8029    1.6  1.3*  0.626*  4-20*  370act  70  a   6,11–14  
SmRu4P12  8.0397  16.5    0.94  0.74  20-300  13.5  60  Γ67  6,12,15–20  
SmOs4P12  8.0752  4.5    2.05*  0.624*  5-20*      80  Γ67  12,21  
SmFe4As12  8.3003    39  37*  1.2*  60-150*  170        22,23  
SmFe4Sb12  9.1302    43  32*  1.25*  60-200*  72    Γ67  6,24–26  
SmRu4Sb12  9.259                    25   
SmOs4Sb12  9.3085    0.26*  0.634*  4-40*  820  2.6-2.83  38  Γ67  1,6,7,14,27–29  
SmPt4Ge12  8.6907    -1.67*  0.564*  5-20*  450  2.9  30  Γ5  30   
SmTi2Al20  14.698  6.5b    -5.3*  0.20*  6.5-20*  150  2.85    Γ8  2,3,5,8  
SmV2Al20  14.571  2.9b    -4.2*  0.14*  4-20*  720  2.85    Γ8  3,8  
SmCr2Al20  14.501  1.8b    -0.93*  0.15*  2-20*  1000  2.85    Γ8  3,8  
SmTa2Al20  14.7536  2.0b    -3.1  0.09  2-50  3200  2.85  51  Γ8  4,5,8,31  
SmFe2Zn20  14.51    47.4  47.8  1.7  60-300  57        32   
SmRu2Zn20  14.290    7.8  8.62  0.71  < 100  258c    115  Γ8  32–34   
SmOs2Zn20  14.482    6.5  0.785  14-100  149*      Γ7  35   
SmCo2Zn20  14.082      -1.83  0.99  < 100  79.5c        32,36  
SmRh2Zn20  14.226  2.46    -5  0.92  3-30  120*    10.8  Γ7  33,37,38  
SmIr2Zn20    1.3    -1.5  0.85    35.3*      Γ7  39   
SmNi2Cd20  15.530    7.2  7.7  0.92  20-300  165c        32,40  
SmPd2Cd20  15.56  3.4    -6.88  0.74  < 100  208c      Γ8  32   
SmPt2Cd20  15.624    0.64  0.53  0.46  2-10      30  Γ7  41   
SmPd3S4  6.676  2.5                Γ8  42–44   
SmBiPt    2.1          300    100  Γ8  45   
SmPb3  4.830  5.10          100    60  Γ8  46,47  
SmPd3  4.106  1.36    -3.1*  0.605*  3.6-38*  280    50  Γ8  46,47  
SmIn3  4.620  14.8    -32*  0.70*  8-45*  40    90  Γ8  46,47  
SmSn3  4.684  9.40    -25*  0.393*  15-50*  180    70  Γ8  46–48   
SmTl3  4.712    5.8        200    150  Γ8  46,47  
SmS-AP  5.79      -4*  0.16*  1-20*  2.04-2.76    Γ8  49–51   
SmS-HP  5.79  ∼20    -4.5*  0.18*  0.6-20*  180  2.04-2.76    Γ8  49–51   
SmSe  6.22              2.04-2.76      51,52  
SmTe  6.63              2.04-2.92      51,52  
SmB6  4.1325  (∼12d         24.8  2.53-2.6    Γ8  53–56   
SmAl2  7.936    120                57   
Sm-based a TN TC θCW μeff CW fit range γ CEF
Compounds (Å) (K) (K) (K) (μB) (K) (mJ/K2mol) v Sm (K) GS Ref.
SmFe4P12  7.8029    1.6  1.3*  0.626*  4-20*  370act  70  a   6,11–14  
SmRu4P12  8.0397  16.5    0.94  0.74  20-300  13.5  60  Γ67  6,12,15–20  
SmOs4P12  8.0752  4.5    2.05*  0.624*  5-20*      80  Γ67  12,21  
SmFe4As12  8.3003    39  37*  1.2*  60-150*  170        22,23  
SmFe4Sb12  9.1302    43  32*  1.25*  60-200*  72    Γ67  6,24–26  
SmRu4Sb12  9.259                    25   
SmOs4Sb12  9.3085    0.26*  0.634*  4-40*  820  2.6-2.83  38  Γ67  1,6,7,14,27–29  
SmPt4Ge12  8.6907    -1.67*  0.564*  5-20*  450  2.9  30  Γ5  30   
SmTi2Al20  14.698  6.5b    -5.3*  0.20*  6.5-20*  150  2.85    Γ8  2,3,5,8  
SmV2Al20  14.571  2.9b    -4.2*  0.14*  4-20*  720  2.85    Γ8  3,8  
SmCr2Al20  14.501  1.8b    -0.93*  0.15*  2-20*  1000  2.85    Γ8  3,8  
SmTa2Al20  14.7536  2.0b    -3.1  0.09  2-50  3200  2.85  51  Γ8  4,5,8,31  
SmFe2Zn20  14.51    47.4  47.8  1.7  60-300  57        32   
SmRu2Zn20  14.290    7.8  8.62  0.71  < 100  258c    115  Γ8  32–34   
SmOs2Zn20  14.482    6.5  0.785  14-100  149*      Γ7  35   
SmCo2Zn20  14.082      -1.83  0.99  < 100  79.5c        32,36  
SmRh2Zn20  14.226  2.46    -5  0.92  3-30  120*    10.8  Γ7  33,37,38  
SmIr2Zn20    1.3    -1.5  0.85    35.3*      Γ7  39   
SmNi2Cd20  15.530    7.2  7.7  0.92  20-300  165c        32,40  
SmPd2Cd20  15.56  3.4    -6.88  0.74  < 100  208c      Γ8  32   
SmPt2Cd20  15.624    0.64  0.53  0.46  2-10      30  Γ7  41   
SmPd3S4  6.676  2.5                Γ8  42–44   
SmBiPt    2.1          300    100  Γ8  45   
SmPb3  4.830  5.10          100    60  Γ8  46,47  
SmPd3  4.106  1.36    -3.1*  0.605*  3.6-38*  280    50  Γ8  46,47  
SmIn3  4.620  14.8    -32*  0.70*  8-45*  40    90  Γ8  46,47  
SmSn3  4.684  9.40    -25*  0.393*  15-50*  180    70  Γ8  46–48   
SmTl3  4.712    5.8        200    150  Γ8  46,47  
SmS-AP  5.79      -4*  0.16*  1-20*  2.04-2.76    Γ8  49–51   
SmS-HP  5.79  ∼20    -4.5*  0.18*  0.6-20*  180  2.04-2.76    Γ8  49–51   
SmSe  6.22              2.04-2.76      51,52  
SmTe  6.63              2.04-2.92      51,52  
SmB6  4.1325  (∼12d         24.8  2.53-2.6    Γ8  53–56   
SmAl2  7.936    120                57   
a

In SmFe4P12, the CEF levels seem to be smeared out due to the Kondo hybridization.

b

Recent NQR study on SmTa2Al20 suggests the possibility of higher order multipole ordering.31 

c

Estimated by the Kadowaki-Woods relation using resistivity data in Ref. 32.

d

In applied pressure above 6 GPa, SmB6 shows an ordering,53 whose order parameter has not been clarified yet.

In Ce-based HF compounds, γ is inversely proportional to the Kondo temperature TK and θCW provides a rough measure of TK, i.e., TK ∼|θCW/2|,58 leading to the relation γ ∝|1/θCW|. At low temperatures (T < TK), the magnetic susceptibility χ(T) flattens out into a largely-enhanced T-independent Pauli paramagnetic contribution χPauli ∝ 1/TK. One comparison of the relative enhancements of γ and χPauli is the dimensionless Wilson ratio RW (∝ χPauli/γ), which is roughly unity (∼ 2) for many of the HF compounds.59 This fact evidences the formation of Fermi liquid state at low temperatures with strongly mass-enhanced quasiparticles. In Sm-based HF compounds (see Table I), however, there seem to be no clear correlations expected from these relations among the physical quantities. In fact, Sm Tr2Al20, which have largely enhanced γ values, do not show any pronounced χPauli contribution at low temperatures. Instead, the CW behaviors remain down to the ordering temperatures. One of the most anomalous points is the extremely small μeff (∼ 0.1 μB), which is quite rare in Ce-based HF materials. This fact suggests that the HF state in Sm-based materials has a mechanism that is markedly different from that of Ce-based materials.

Figure 2 displays a log-log plot of γ versus μeff of cubic Sm-based compounds. In the LS coupling regime, μeff of a Sm3+ ion is 0.845, 0.665, and 0.412 μB for free, Γ8, and Γ7 states, respectively. In the region of μeff > 0.4 μB, Sm Tr2Zn20, Sm Tr2Cd20, and filled skutterudites are located. 4 f electrons of Sm ions in these compounds are expected to be in well localized states (hybridization with conduction electrons are weak). In compounds with μeff > 0.845 μB, magnetic moments of d electrons of Tr ions probably contribute to the CW behaviors. Sm ions in most of the compounds with μeff < 0.4 μB have intermediate valence states. This fact suggests that, in these compounds, the Sm 4 f electrons are strongly hybridized with conduction electrons. All the Sm Tr2Al20 compounds belong to this group, and they tend to have large γ values (>102 mJ/K2mol). Most striking one is SmTa2Al20, which has γ = 3200 mJ/K2mol and μeff = 0.09 μB. Interestingly, as Fig. 2 displays, most of the compounds lie in the zone expressed by γ=α/μeff2 with α = 5 ∼ 2 × 102 mJμB2/K2mol. Interpretation of this trend is not trivial.

FIG. 2.

The electronic specific-heat coefficient γ versus the effective magnetic moment μeff of cubic Sm-based compounds. The compounds shown in red: Sm ions are in intermediate valence states. The arrows indicate μeff of a Sm3+ ion (in the LS coupling regime); 0.845, 0.665, and 0.412 μB for free, Γ8, and Γ7 states, respectively. The blue colored zone corresponds to γ=α/μeff2 with α = 5 ∼ 2 × 102 mJμB2/K2mol.

FIG. 2.

The electronic specific-heat coefficient γ versus the effective magnetic moment μeff of cubic Sm-based compounds. The compounds shown in red: Sm ions are in intermediate valence states. The arrows indicate μeff of a Sm3+ ion (in the LS coupling regime); 0.845, 0.665, and 0.412 μB for free, Γ8, and Γ7 states, respectively. The blue colored zone corresponds to γ=α/μeff2 with α = 5 ∼ 2 × 102 mJμB2/K2mol.

Close modal

Figure 3 displays a log-log plot of γ versus the average Sm valence vSm determined by XAS of cubic Sm-based compounds. Largely enhanced γ is observed in compounds for vSm slightly lower than 3+. This fact suggests that the Sm valence fluctuation is associated with the heavy quasiparticle formation. As shown in Fig. 1, Sm3+ ion has a degenerate ground state with several types of degrees of freedom, which can lead to strongly-correlated electron states via hybridization with conduction electrons. On the other hand, Sm2+ ion has a singlet ground state with no degrees of freedom. Therefore, the decrease in γ approaching vSmto2 + is reasonable. In the ordinary Ce-based HF compounds, γ ≥ 103 mJ/K2mol suggests that it is in the strongly correlated limit. In this limit, the mass-enhancement factor m*/m and the shift in the 4 f-electron number Δnf caused by the Kondo effect are expected to satisfy m*/m = (1 + Δnf)/(2Δnf).60 If this approximate formula is tentatively applied to the Sm-based compounds, vSm ∼ + 2.8 (Δnf ∼ 0.2) leads to m*/m ∼ 3, which is a couple of orders of magnitude smaller than the observed values. This fact clearly demonstrates that the HF states in the Sm-based compounds are quite extraordinary.

FIG. 3.

The electronic specific-heat coefficient γ versus the average Sm valence determined by XAS. The horizontal bar indicates the change in the Sm valence due to the temperature dependence. The broken curve is a guide to the eye.

FIG. 3.

The electronic specific-heat coefficient γ versus the average Sm valence determined by XAS. The horizontal bar indicates the change in the Sm valence due to the temperature dependence. The broken curve is a guide to the eye.

Close modal

As shown above, the Sm-based HF states have the remarkable characteristics, which are quite different from the Ce-based ones. In Sm-based systems, valence fluctuations occur between Sm3+(4f5) and Sm2+(4f6) states, while they occur between Ce3+(4f1) and Ce4+(4f0) states in the Ce-based ones. It seems that involvement of multiple 4 f elections of a Sm ion in the formation of HF states plays a key role for the above-mentioned characteristics.

A theoretical model has been proposed recently by Siina using a two-orbital impurity Anderson model.61,62 This model suggests the occurrence of a crossover between two extremal ground states, i.e., a local many-body singlet phase and a global Kondo singlet phase. Around the crossover, there appears a HF state, where Sm ions have an intermediate valence and RW becomes zero.62 The crossover may correspond to vSm ∼ 2.8 in Fig. 3. However, it seems that the two characteristic features, i.e., the absence of χPauli at low temperatures and extremely small μeff (∼ 0.1 μB) cannot be accounted for in this model.

In summary, we have compared the key physical parameters of cubic Sm-based intermetallic compounds. The results revealed that the Sm-based heavy fermion states have some significant characteristics, which are quite different from the Ce-based ones. The main remarkable features are the following; (i) there is an inverse relation between the electronic specific heat coefficient γ and the effective magnetic moment μeff (γ=α/μeff2 with α = 5 ∼ 2 × 102 mJμB2/K2mol), and (ii) largely enhanced γ appears in the intermediate Sm valance states around vSm ∼ +2.8. Other remarkable features are the absence of enhanced Pauli paramagnetism at low temperatures and largely suppressed μeff (down to ∼ 0.1 μB). These are quite different from those of Ce-based heavy-fermion compounds, pointing to an unconventional mechanism for the formation of Sm-based heavy quasiparticles, possibly caused by the involvement of multiple 4 f elections of a Sm ion in the hybridization process.

We gratefully appreciate Prof. Ryousuke Shiina for fruitful discussions. This work was financially supported by JSPS KAKENHI Grant Numbers 15H03693, 15H05884, 15J07600, and 15K05178.

1.
S.
Sanada
,
Y.
Aoki
,
H.
Aoki
,
A.
Tsuchiya
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
J. Phys. Soc. Jpn.
74
,
246
(
2005
).
2.
R.
Higashinaka
,
T.
Maruyama
,
A.
Nakama
,
R.
Miyazaki
,
Y.
Aoki
, and
H.
Sato
,
J. Phys. Soc. Jpn.
80
,
093703
(
2011
).
3.
A.
Sakai
and
S.
Nakatsuji
,
Phys. Rev. B
84
,
201106(R)
(
2011
).
4.
A.
Yamada
,
R.
Higashinaka
,
R.
Miyazaki
,
K.
Fushiya
,
T. D.
Matsuda
,
Y.
Aoki
,
W.
Fujita
,
H.
Harima
, and
H.
Sato
,
J. Phys. Soc. Jpn.
82
,
123710
(
2013
).
5.
A.
Yamada
,
R.
Higashinaka
,
K.
Fushiya
,
T.
Asano
,
T. D.
Matsuda
,
M.
Mizumaki
,
S.
Tsutsui
,
K.
Nitta
,
T.
Ina
,
T.
Uruga
, and
Y.
Aoki
,
J. Phys.: Conf. Ser.
683
,
012020
(
2016
).
6.
M.
Mizumaki
,
S.
Tsutsui
,
H.
Tanida
,
T.
Uruga
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
Physica B
383
,
144
(
2006
).
7.
K.
Fushiya
,
R.
Miyazaki
,
R.
Higashinaka
,
A.
Yamada
,
M.
Mizumaki
,
S.
Tsutsui
,
K.
Nitta
,
T.
Uruga
,
B.
Suemitsu
,
H.
Sato
, and
Y.
Aoki
,
Phys. Rev. B
92
,
075118
(
2015
).
8.
R.
Higashinaka
,
A.
Yamada
,
R.
Miyazaki
,
Y.
Aoki
,
M.
Mizumaki
,
S.
Tsutsui
,
K.
Nitta
,
T.
Uruga
, and
H.
Sato
,
JPS Conf. Proc.
3
,
011079
(
2014
).
9.
R.
Shiina
,
O.
Sakai
,
H.
Shiba
, and
P.
Thalmeier
,
J. Phys. Soc. Jpn.
67
,
941
(
1998
).
10.
W. C.
Martin
,
R.
Zalubas
, and
L.
Hagan
, in
Atomic Energy Levels -The Rare-Earth Elements
, (
National Bureau of Standards
,
Washington, D.C.
,
1978
) p.
180
-
183
.
11.
W.
Jeitschko
and
D. J.
Braun
,
Acta Crystallogr. B
33
,
3401
(
1977
).
12.
K.
Matsuhira
,
Y.
Doi
,
M.
Wakeshima
,
Y.
Hinatsu
,
H.
Amitsuka
,
Y.
Shimaya
,
R.
Giri
,
C.
Sekine
, and
I.
Shirotani
,
J. Phys. Soc. Jpn.
74
1030
(
2005
).
13.
N.
Takeda
and
M.
Ishikawa
,
J. Phys.: Condens. Matter
15
,
14
(
2003
).
14.
M.
Mizumaki
,
S.
Tsutsui
,
H.
Tanida
,
T.
Uruga
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
J. Phys. Soc. Jpn.
76
,
053706
(
2007
).
15.
Y.
Aoki
,
S.
Sanada
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
J. Phys. Soc. Jpn.
76
,
113703
(
2007
).
16.
C.
Sekine
,
T.
Uchiumi
,
I.
Shirotani
, and
T.
Yagi
, in
Science and Technology of High Pressure
, ed.
M. H.
Manghnani
,
W. J.
Nellis
, and
M. F.
Nicol
(
Universities Press
,
Hyderabad
,
2000
) p.
826
.
17.
K.
Fushiya
, Doctoral thesis (
2016
).
18.
T. U.
Ito
,
W.
Higemoto
,
K.
Ohishi
,
T.
Fujimoto
,
R. H.
Heffner
,
N.
Nishida
,
K.
Satoh
,
H.
Sugawara
,
Y.
Aoki
,
D.
Kikuchi
, and
H.
Sato
,
J. Phys. Soc. Jpn.
76
,
053707
(
2007
).
19.
T.
Matsumura
,
S.
Michimura
,
T.
Inami
,
Y.
Hayashi
,
K.
Fushiya
,
T. D.
Matsuda
,
R.
Higashinaka
,
Y.
Aoki
, and
H.
Sugawara
,
Phys. Rev. B
89
,
161116(R)
(
2014
).
20.
T.
Matsumura
,
S.
Michimura
,
T.
Inami
,
K.
Fushiya
,
T. D.
Matsuda
,
R.
Higashinaka
,
Y.
Aoki
, and
H.
Sugawara
,
Phys. Rev. B
94
,
184425
(
2016
).
21.
R.
Giri
,
C.
Sekine
,
Y.
Shimaya
,
I.
Shirotani
,
K.
Matsuhira
,
Y.
Doi
,
Y.
Hinatsu
,
M.
Yokoyama
, and
H.
Amitsuka
,
Physica B
329-333
,
458
(
2003
).
22.
D.
Kikuchi
,
S.
Tatsuoka
,
K.
Tanaka
,
Y.
Kawahito
,
M.
Ueda
,
A.
Shinozawa
,
H.
Aoki
,
K.
Kuwahara
,
Y.
Aoki
, and
H.
Sato
,
Physica B
403
,
884
(
2008
).
23.
T.
Namiki
,
C.
Sekine
,
K.
Matsuhira
,
M.
Wakeshima
, and
I.
Shirotani
,
J. Phys. Soc. Jpn.
79
,
074714
(
2010
).
24.
M. E.
Danebrock
,
C. B. H.
Evers
, and
W.
Jeitschko
,
J. Phys. Chem. Solid.
57
,
381
(
1996
).
25.
C. B. H.
Evers
,
W.
Jeitschko
,
L.
Boonk
,
D. J.
Braun
,
T.
Ebel
, and
U. D.
Scholz
,
J. alloys compd.
224
,
184
(
1995
).
26.
M.
Ueda
,
Y.
Kawahito
,
K.
Tanaka
,
D.
Kikuchi
,
H.
Aoki
,
H.
Sugawara
,
K.
Kuwahara
,
Y.
Aoki
, and
H.
Sato
,
Physica B
403
,
881
(
2008
).
27.
W. M.
Yuhasz
,
N. A.
Frederick
,
P.-C.
Ho
,
N. P.
Butch
,
B. J.
Taylor
,
T. A.
Sayles
,
M. B.
Maple
,
J. B.
Betts
,
A. H.
Lacerda
,
P.
Rogl
, and
G.
Giester
,
Phys. Rev. B
71
,
104402
(
2005
).
28.
Y.
Aoki
,
S.
Sanada
,
H.
Aoki
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
Physica B
378-380
,
54
(
2006
).
29.
Y.
Aoki
,
S.
Sanada
,
D.
Kikuchi
,
H.
Sugawara
, and
H.
Sato
,
J. Phys. Soc. Jpn.
80
,
SA013
(
2011
).
30.
R.
Gumeniuk
,
M.
Schöneich
,
A.
Leithe-Jasper
,
W.
Schnelle
,
M.
Nicklas
,
H.
Rosner
,
A.
Ormeci
,
U.
Burkhardt
,
M.
Schmidt
,
U.
Schwarz
,
M.
Ruck
, and
Y.
Grin
,
New J. Phys.
12
,
103035
(
2010
).
31.
J.
Nakase
,
R.
Miyake
,
T.
Kubo
,
R.
Kawase
,
H.
Kotegawa
,
H.
Tou
,
A.
Yamada
,
R.
Higashinaka
,
T. D.
Matsuda
, and
Y.
Aoki
,
JPS Meeting 2017
20pL21-4 (
2017
).
32.
D.
Yazici
,
B. D.
White
,
P.-C.
Ho
,
N.
Kanchanavatee
,
K.
Huang
,
A. J.
Friedman
,
A. S.
Wong
,
V. W.
Burnett
,
N. R.
Dilley
, and
M. B.
Maple
,
Phys. Rev. B
90
,
144406
(
2014
).
33.
T.
Nasch
,
W.
Jeitschko
, and
U. C.
Rodewald
,
Zeitschrift fur Naturforschung B
52
,
9
(
1997
).
34.
Y.
Isikawa
,
T.
Mizushima
,
J.
Ejiri
, and
T.
Kuwai
,
J. Phys. Soc. Jpn.
83
,
073701
(
2014
).
35.
M.
Tanahashi
,
K.
Adachi
,
T.
Sasahara
,
N.
Kase
,
T.
Nakano
, and
N.
Takeda
,
J. Phys. Conf. Ser.
683
,
012019
(
2016
).
36.
S.
Jia
,
Ni.
Ni
,
S. L.
Budko
, and
P. C.
Canfield
,
Phys. Rev. B
80
,
104403
(
2010
).
37.
Y.
Isikawa
,
T.
Mizushima
,
A.
Fujita
, and
T.
Kuwai
,
J. Phys. Soc. Jpn.
85
,
024707
(
2016
).
38.
M.
Tanahashi
,
K.
Adachi
,
T.
Sasahara
,
N.
Kase
,
T.
Nakano
, and
N.
Takeda
,
JPS Meeting 2015 autumun
17aPS-64 (
2015
).
39.
Y.
Taga
,
K.
Sugiyama
,
K.
Enoki
,
Y.
Hirose
,
K.
Iwakawa
,
A.
Mori
,
K.
Ishida
,
T.
Takeuchi
,
M.
Hagiwara
,
K.
Kindo
,
R.
Settai
, and
Y.
Onuki
,
J. Phys. Soc. Jpn.
81
,
SB051
(
2012
).
40.
V. W.
Burnett
,
D.
Yazici
,
B. D.
White
,
N. R.
Dilley
,
A. J.
Friedman
,
B.
Brandom
, and
M. B.
Maple
,
J. Solid State Chem.
215
,
114
(
2014
).
41.
A.
Yamada
,
S.
Oike
,
R.
Higashinaka
,
T. D.
Matsuda
, and
Y.
Aoki
,
Phys. Rev. B
96
,
085102
(
2017
).
42.
D. A.
Keszler
,
J. A.
Ibers
, and
M. H.
Mueller
,
J. Chem. Soc.
11
,
2369
(
1985
).
43.
K.
Abe
,
J.
Kitagawa
,
N.
Takeda
, and
M.
Ishikawa
,
Phys. Rev. Lett.
83
,
5366
(
1999
).
44.
E.
Matsuoka
,
M.
Watahiki
,
M.
Sakoda
,
H.
Sugawara
,
T.
Sakurai
,
H.
Ohta
, and
H.
Onodera
,
J. Phys. Conf. Ser.
273
,
012138
(
2011
).
45.
M. S.
Kim
,
T.
Sasakawa
,
T.
Suemitsu
,
Y.
Bando
,
K.
Umeo
,
F.
Iai
,
H.
Mitamura
,
T.
Goto
, and
T.
Takabatake
,
J. Phys. Soc. Jpn.
70
,
3650
(
2001
).
46.
B.
Liu
,
M.
Kasaya
, and
T.
Kasuya
,
J. Phys. Colloques
49
,
C8
369
(
1988
).
47.
B.
Liu
, Doctoral thesis (
1989
).
48.
H.
Yamaoka
,
P.
Thunstrom
,
I.
Jarrige
,
K.
Shimada
,
N.
Tsujii
,
M.
Arita
,
H.
Iwasawa
,
H.
Hayashi
,
J.
Jiang
,
T.
Habuchi
,
D.
Hirayama
,
H.
Namatame
,
M.
Taniguchi
,
U.
Murao
,
S.
Hosoya
,
A.
Tamaki
, and
H.
Kitazawa
,
Phys. Rev. B
85
,
115120
(
2012
).
49.
Y.
Haga
,
J.
Derr
,
A.
Barla
,
B.
Salce
,
G.
Lapertot
,
I.
Sheikin
,
K.
Matsubayashi
,
N. K.
Sato
, and
J.
Flouquet
,
Phys. Rev. B
70
,
220406
(
2004
).
50.
V. V.
Kaminski
,
N. V.
Sharenkova
,
L. N.
Vasilev
, and
S. M.
Solovev
,
Physics of the Solid State
47
,
225
(
2005
).
51.
I.
Jarrige
,
H.
Yamaoka
,
J. P.
Rueff
,
T.
Matsumura
,
K.
Imura
,
H. S.
Suzuki
,
J. F.
Liu
,
N.
Hiraoka
,
H.
Ishii
, and
K. D.
Tsuei
,
SP12U1 U3.2-Inelastic X-ray Scattering
.
52.
D. C.
Gupta
and
S.
Kulshrestha
,
J. Phys.: Condens. Matter
21
,
436011
(
2009
).
53.
A.
Barla
,
J.
Derr
,
J. P.
Sanchez
,
B.
Salce
,
G.
Lapertot
,
B. P.
Doyle
,
R.
Rüffer
,
R.
Lengsdorf
,
M. M.
Abd-Elmeguid
, and
J.
Flouquet
,
Phys. Rev. Lett.
94
,
166401
(
2005
).
54.
W. A.
Phelan
,
S. M.
Koohpayeh
,
P.
Cottingham
,
J. W.
Freeland
,
J. C.
Leiner
,
C. L.
Broholm
, and
T. M.
McQueen
,
Phys. Rev. X
4
,
0311012
(
2014
).
55.
J.
Derr
,
G.
Knebel
,
D.
Braithwaite
,
B.
Salce
,
J.
Flouquet
,
K.
Flachbart
,
S.
Gabani
, and
N.
Shitsevalova
,
Phys. Rev. B
77
,
193107
(
2008
).
56.
J. M.
Tarascon
,
Y.
Isikawa
,
B.
Chevalier
,
J.
Etourneau
,
P.
Hagenmuller
, and
M.
Kasaya
,
J. Phys. France
41
,
1141
(
1980
).
57.
H.
Adachi
and
H.
Ino
,
Nature
401
,
9
(
1999
).
58.
A. C.
Hewson
,
The Kondo Problem to Heavy Fermions
(
Cambridge University Press
,
London
,
1993
).
59.
P. A.
Lee
,
T. M.
Rice
,
J. W.
Serene
,
L. J.
Sham
, and
J. W.
Wilkins
,
Comments on Condensed Matter Physics
12
,
99
(
1986
).
60.
K.
Miyake
,
J. Phys. Cond. Matt.
19
,
125201
(
2007
).
61.
R.
Shiina
,
J. Phys. Soc. Jpn.
86
,
034705
(
2017
).
62.
R.
Shiina
,
J. Phys. Soc. Jpn.
87
,
014702
(
2018
).