Among all renewable energy sources, solar energy holds the greatest potential for electricity production. This transformation from solar to electrical energy is facilitated by solar cells, typically modeled using single-diode, double-diode, and triple-diode representations. In this study, we evaluate the effectiveness of the Walrus Optimization Algorithm (WOA) for estimating the parameters of these models. Furthermore, we introduce three innovative hybrid variants of WOA that incorporate chaotic sequences, adaptive modifications, and integration with the Simulated Annealing (SA) algorithm, thereby enhancing the parameter estimation process. Our research was conducted on two well-documented types of solar cells/modules, with additional tests on the performance of these algorithms on a solar panel under varying insolation and temperature conditions. The results underscore the superior efficiency, accuracy, and practicality of the hybrid algorithms, particularly the variant augmented with chaotic sequences, over traditional parameter estimation methods in solar cell technologies. This paper highlights significant advancements in algorithmic approaches, paving the way for more precise and reliable solar energy technologies.

The electric power sector has undergone significant transformations over the past few decades.1 With the increasingly complex demands of electrical distribution and consumption, there is also a heightened focus on environmental considerations—specifically, the need to reduce the ecological footprint.2 Consequently, modern electrical power systems represent highly complex and dynamic entities designed to meet the continuous, reliable, and efficient supply demands of a diverse array of consumers. The pronounced technological advancements have led to the proliferation of sensitive devices, elevating the standards for the quality of electricity supply.3 Modern systems have become more sophisticated, employing smart grids and digital technologies to optimize performance.

To reduce greenhouse gas emissions and mitigate climate changes, electrical power systems are progressively incorporating renewable energy sources alongside conventional ones. Among these, solar energy is the most prevalent.4 It is extensively utilized for water heating and desalination, but its most critical application is in the production of electrical energy. Solar energy conversion is primarily achieved in two ways:

  • Solar thermal power plants utilize a system of mirrors to concentrate solar rays, heating a working fluid to generate steam that drives turbines and produces electricity.

  • Photovoltaic (PV) devices, or solar cells, directly convert solar radiation into electrical energy. Due to its efficiency and growing affordability, the PV technology is now the dominant and fastest-expanding form of renewable energy worldwide, accounting for about 60% of total renewable energy investments in 2022. Thus, it is clear that the PV technology plays an increasingly significant role in the global energy transformation.

While the utilization of solar energy as a renewable source presents numerous benefits, including reduced greenhouse gas emissions, less reliance on fossil fuels, and versatile applications, it also poses several challenges. The most significant difficulties include its non-stationary nature, dependence on weather conditions, energy storage challenges, and the high initial costs associated with the use of relatively expensive inverter equipment.5 Additionally, to enhance efficiency, maximum power point tracking is necessary, which further increases production costs.6 

In terms of electrical energy production via photovoltaic modules, the electrical output of a solar cell (modules and panels) is best represented by its current–voltage (IV) characteristic curve.7 Accurate modeling of this curve is crucial and must consider all relevant factors, such as the inherent parameters of the cell and external influences, such as radiation (G) and temperature (T).8 The pronounced nonlinearity of the IV characteristic means that various models are employed to represent the equivalent circuit of a solar cell, each differing in complexity and accuracy.

Solar cells can be modeled using three types of equivalent circuits: the single diode model (SDM), the two-diode model (DDM), and the three-diode model (TDM) (see Fig. 1).9 The simplest SDM includes a DC source (IPV), a diode in parallel with the source, and two resistors (RP and RS) in parallel and series, respectively. This model is defined by five parameters: source current (Ipv), reverse saturation current (I0), diode ideality factor (n), parallel resistance (RP), and series resistance (RS), represented as a decision vector DV = [IPV, I0, n, RP, RS].

FIG. 1.

(a) SDM, (b) DDM, and (c) TDM equivalent circuits.

FIG. 1.

(a) SDM, (b) DDM, and (c) TDM equivalent circuits.

Close modal

The main limitation of the SDM is its inability to account for recombination current. To address this, the DDM includes an additional diode, with parameters represented by a seven-element vector DV = [IPV, I01, n1, I02, n2, RP, RS], where I01 and I02 are the reverse saturation and recombination currents, respectively, and n1 and n2 are the ideality factors of each diode.10 The TDM further extends this model by adding a third diode to account for leakage and surface recombination currents, represented by a nine-element vector DV = [IPV, I01, n1, I02, n2, I03, n3, RP, RS], where I03 and n3 are additional parameters.11 

The IV characteristics of solar cells are highly nonlinear.7,9 While exact analytical relationships exist for the SDM,7 the DDM and TDM are typically solved numerically due to the absence of straightforward analytical expressions.12 However, recent literature has proposed an analytical relationship for the DDM, providing satisfactory results despite some mathematical approximations.13 

Determining the parameters of solar cells can be approached in two main ways:

  • Classical methods, which may be either analytical14 or numerical.15 

  • Modern metaheuristic methods.16–42 

Analytical methods, initially predominant in the analysis of solar cell operation, offer precise descriptions of the physical behaviors of the models they study. They provide exact solutions for problems that can be mathematically defined by specific equations.14 However, due to the complex nature of the equations describing solar cells’ I–V characteristics, various approximations must be introduced. These approximations, while necessary, can significantly diminish the accuracy of the solutions.

With advances in the computer technology, numerical methods have gained prominence. These methods have largely surpassed analytical methods in terms of accuracy, as they handle the complexity of solar cell models more effectively.15 Their use is, however, bounded by the computational power available, the accuracy of results based on the iteration step, and the time required for computations.

Metaheuristic methods today offer the most promising results in determining the parameters of the equivalent circuits of solar cells, including SDM, DDM, and TDM. These methods are recognized for their efficiency in optimizing highly complex and nonlinear problems. Their principal advantage lies in their ability to explore a vast array of potential solutions extensively, thereby identifying optimal or near-optimal parameter sets for the models in question. A comprehensive list of the most frequently employed metaheuristic methods in this domain is presented in Table I.13,16–42

TABLE I.

Commonly used methods for determining parameters in solar cell equivalent circuits.

NumberReferencesMethodYearFirst authorJournal
16  SDM 2022 Rawa Mathematics 
17  SDM 2021 Calasan Sol. Energy 
18  SDM 2021 Saadaoui Energy Convers. Manag. 
19  SDM 2021 Xiong Energy Rep. 
20  SDM 2021 Weng Energy Convers. Manag. 
21  SDM 2021 Ndi Energy Rep. 
22  SDM 2021 Naeijan Energy Rep. 
23  SDM 2020 Calasan Energy Convers. Manag. 
24  SDM 2020 Liang Energy Convers. Manag. 
10 25  SDM 2019 Li Energy Convers. Manag. 
11 26  SDM 2019 Chen Energy 
12 27  SDM 2019 Yu Appl. Energy 
13 28  SDM 2018 Beigi Sol. Energy 
14 29  SDM 2018 Bana Energy Rep. 
15 30  SDM 2018 Szabo Appl. Sci. 
16 31  SDM 2016 Silva IEEE J. Photovoltaics 
17 16  DDM 2022 Rawa Mathematics 
18 17  DDM 2021 Calasan Sol. Energy 
19 32  DDM 2021 Long Energy 
20 20  DDM 2021 Weng Energy Convers. Manag. 
21 19  DDM 2021 Xiong Energy Rep. 
22 18  DDM 2021 Sadaou Energy Convers. Manag. 
23 21  DDM 2021 Ndi Energy Rep. 
24 33  DDM 2020 Kumar Optik 
25 34  DDM 2020 Gude Sol. Energy 
26 35  DDM 2020 Jiao Energy 
27 36  DDM 2019 Calasan Energies 
28 28  DDM 2018 Beigi Sol. Energy 
29 13  DDM 2015 Lun Sol. Energy 
30 37  DDM 2014 Hejri IEEE J. Photovoltaics 
31 16  TDM 2022 Rawa Mathematics 
32 17  TDM 2021 Calasan Sol. Energy 
33 38  TDM 2021 Liu Energy 
34 22  TDM 2021 Naeijian Energy Rep. 
35 39  TDM 2020 Quais Energy Convers. Manag. 
36 40  TDM 2020 Omnia IET Renew. Power Gener. 
37 41  TDM 2020 Premkumar Optik 
38 33  TDM 2020 Kumar Optik 
39 42  TDM 2018 Abd Elaziz Energy Convers. Manag 
NumberReferencesMethodYearFirst authorJournal
16  SDM 2022 Rawa Mathematics 
17  SDM 2021 Calasan Sol. Energy 
18  SDM 2021 Saadaoui Energy Convers. Manag. 
19  SDM 2021 Xiong Energy Rep. 
20  SDM 2021 Weng Energy Convers. Manag. 
21  SDM 2021 Ndi Energy Rep. 
22  SDM 2021 Naeijan Energy Rep. 
23  SDM 2020 Calasan Energy Convers. Manag. 
24  SDM 2020 Liang Energy Convers. Manag. 
10 25  SDM 2019 Li Energy Convers. Manag. 
11 26  SDM 2019 Chen Energy 
12 27  SDM 2019 Yu Appl. Energy 
13 28  SDM 2018 Beigi Sol. Energy 
14 29  SDM 2018 Bana Energy Rep. 
15 30  SDM 2018 Szabo Appl. Sci. 
16 31  SDM 2016 Silva IEEE J. Photovoltaics 
17 16  DDM 2022 Rawa Mathematics 
18 17  DDM 2021 Calasan Sol. Energy 
19 32  DDM 2021 Long Energy 
20 20  DDM 2021 Weng Energy Convers. Manag. 
21 19  DDM 2021 Xiong Energy Rep. 
22 18  DDM 2021 Sadaou Energy Convers. Manag. 
23 21  DDM 2021 Ndi Energy Rep. 
24 33  DDM 2020 Kumar Optik 
25 34  DDM 2020 Gude Sol. Energy 
26 35  DDM 2020 Jiao Energy 
27 36  DDM 2019 Calasan Energies 
28 28  DDM 2018 Beigi Sol. Energy 
29 13  DDM 2015 Lun Sol. Energy 
30 37  DDM 2014 Hejri IEEE J. Photovoltaics 
31 16  TDM 2022 Rawa Mathematics 
32 17  TDM 2021 Calasan Sol. Energy 
33 38  TDM 2021 Liu Energy 
34 22  TDM 2021 Naeijian Energy Rep. 
35 39  TDM 2020 Quais Energy Convers. Manag. 
36 40  TDM 2020 Omnia IET Renew. Power Gener. 
37 41  TDM 2020 Premkumar Optik 
38 33  TDM 2020 Kumar Optik 
39 42  TDM 2018 Abd Elaziz Energy Convers. Manag 

Based on the literature reviewed, the following conclusions can be drawn:

  • Various metaheuristic algorithms are employed in recent studies for determining the parameters of solar cell models.

  • The diversity of methods suggests that no single approach has yet been established as definitively superior for determining solar cell parameters. This area remains ripe for further research.

  • Hybrid metaheuristic algorithms are highlighted in the literature as providing superior solutions. They enhance the convergence curves of existing algorithms, achieve quicker convergence to solutions, require fewer iterations, and demonstrate better statistical performance than non-hybrid algorithms.

This paper focuses on parameter determination for all three models of solar cells using three hybrid variants of the Walrus Optimization Algorithm (WaOA). These variants will incorporate chaotic sequences, undergo adaptive modifications, and integrate with the Simulated Annealing (SA) algorithm. This study will be the first to assess the efficacy of these hybrid models in estimating solar cell parameters.

Additionally, all hybrid variants will be implemented across the three solar cell models. The Double-Diode Model (DDM) will be explored in two scenarios: using a numerical approach to describe the current–voltage relationship12 and an analytical approach proposed by Lun et al.13 

The main contributions of this paper are as follows:

  • It estimates parameters for all three models of solar cells, which is not commonly addressed in a single study.

  • It utilizes the Lambert W function along with iterative Lambert W approaches for parameter estimation.

  • It proposes three variants of a hybrid metaheuristic algorithm for parameter estimation of solar cells.

  • It conducts tests of the proposed algorithms on a solar panel under varying insolation and temperature conditions.

This paper is structured as follows: Sec. II describes the solar cell models. Section III introduces the new algorithm for estimating solar cell parameters. Section IV presents numerical results of the parameter estimation for literature-based solar cells and compares these results with existing approaches. Section V discusses tests of the proposed algorithm on a solar module under various conditions. The conclusion summarizes the main findings of this study and suggests avenues for future research.

In this section, three solar cell equivalent circuits are described.

The single diode model of a solar cell represents a standard approach when it comes to representing the equivalent circuit of solar cells. Mathematically, the relationship between current and voltage in this model can be expressed by the following equation:
(1)
where IPV represents the photogenerated current, I0 represents the diode reverse saturation current, and n is the diode ideality factor, while Vth = KBT/q is the thermal voltage (KB is the Boltzmann constant, T is the temperature in kelvin, and q is the electron charge).
It is important to emphasize that an analytical solution for the mentioned relationship can be determined using the Lambert W function.23 Therefore, the current–voltage relationship in the SDM of a solar cell can be represented as follows:
(2)
where W represents the solution to the Lambert W function. It should be noted that in practice, when it comes to the current–voltage characteristics of solar cells, each individual voltage value corresponds to a precisely determined current value. Therefore, using Eq. (2), it is possible to calculate current values for each voltage value that corresponds to data obtained through measurements.
The relationship between current and voltage in the equivalent circuit of a solar cell with two diodes can be presented as follows:
(3)
where IPV denotes the photogenerated current, I01 and I02 are the reverse saturation currents of diodes 1 and 2, respectively, and n1 and n2 are the ideality factors of the diodes, respectively.

Unlike the SDM, due to the pronounced nonlinearity of the observed characteristics and the great complexity of the corresponding expression, there is no exact analytical solution in this case. The complexity of the model significantly influences the choice and application of the solution methodology. Therefore, to determine the current in the DDM and TDM, the application of appropriate iterative procedures is necessary.

It should be particularly noted that Eq. (3) represents the key mathematical expression that provides the basis for various methods of calculating the current–voltage characteristics of the equivalent circuit model of a solar cell with two diodes. In this work, two characteristic methods will be presented: Explicit Double-Diode Modeling Method based on Lambert W-function (EDDMMLW)13 and iterative DDM Lambert W approach.17 

1. Explicit double-diode modeling method based on Lambert W-function (EDDMMLW)13

The analytical approach presented in Ref. 13 was carried out with appropriate mathematical approximations related to the saturation current values and the ideal factor. According to this model, the current–voltage equation of the DDM of solar cells has the following form:
(4)

2. Iterative DDM Lambert W approach

The current is obtained from the following equation:
(5)
in which the variable y is calculated from the following iterative equation [where (p) represents the current iteration]:
(6)
whose stopping criterion is defined as follows:
(7)
where ε is a small real number (for example, ε = 10−10).
In the previous equation, variables α, β, and δ are as follows:
(8)
(9)
(10)
For TDM, there is no analytical relationship between current and voltage. Therefore, their relationship is determined by an iterative approach. In this work, the iterative approach described in Ref. 17, which is analogous to the iterative approach for DDM, will be used. The current is obtained from the following equation:
(11)
in which the variable y is calculated from the following iterative equation [where (p) represents the current iteration]:
(12)
whose stopping criterion is defined as follows:
(13)
where ε is a small real number (for example, ε = 10−10).
In the previous equation, variables α, β, and δ are as follows:
(14)
(15)
(16)
(17)
(18)

The original version of the Walrus Optimization Algorithm (WaOA) is presented in Ref. 43. The basics of this algorithm are found in the natural behavior of walruses. This behavior consists of three phases:

  1. Guiding individuals to feed.

  2. Migration of walruses to rocky beaches.

  3. Fight or escape from predators.

Mathematically, the population of WaOA consists of searcher members-walruses. Concretely, each walrus is a potential solution to the optimization problem. Every walrus of the population is actually a vector composed of m variables, where m stands for the dimension of the optimization problem. Therefore, the population of N walruses is described with matrix X, whose dimensions are Nxm,
(19)
where Xi represents the ith walrus in the population and xi,j is the value of the jth optimization variable suggested by the ith walrus.
The quality of each potential solution (each walrus from the population) is measured by the objective function (OF) value Fi = F(Xi),
(20)
where F stands for the objective function.
Before the iteration procedure begins, the initial population of walruses is randomly initialized between the lower bound (LB) and upper bound (UB) of optimization variables,
(21)
where rand is the vector of random numbers between 0 and 1, generated separately for each walrus.
  1. The first phase of the algorithm depicts the global search of the complete search space, so-called exploration. This phase is named feeding strategy. According to the natural behavior of walruses, the strongest walrus guides other walruses in the group to find food. The strongest, or the best walrus, is the one with the lowest value of objective function. Mathematically, this phase is modeled by updating the position of each walrus XiP1 as follows:
    (22)
    where xi,jP1 is the jth dimension of the newly generated position of the ith walrus, SW denotes the best walrus of the population, and Ii,j are integer numbers that take value 1 or 2. If the improved value of objective function is obtained, then the old position is replaced by newly generated, as follows:
    (23)
  2. The second phase is used to describe the migration of the walruses to outcrops or rocky beaches, caused by the warming of the air in late summer. During this phase, the assumption is made that each walrus migrates to the another walrus randomly chosen from the population. Mathematical formulation to update the position of each walrus XiP2 is given as follows:
    (24)
    where Xk (ki) is the randomly selected walrus and Fk is its’ objective function value. Similarly to the first phase, it needs to be checked whether newly generated position provides better objective function value than the old one,
    (25)
  3. In the third phase, escaping of the walruses and their fighting against predators is presented. The strategy used to escape and find the predators means that the walruses change the position, but only in the vicinity of the position in which they were previously located. The newly generated position of each walrus XiP3 can be calculated as follows:
    (26)
    where t is the current iteration number. Furthermore, if the new position is better than the old one, it takes the following place:
    (27)

    After completing the third phase, one iteration of WaOA is completed. Furthermore, the described iterative procedure is repeated until the predefined maximum number of iterations is reached. Finally, the optimal solution of the optimization problem is given with the best walrus, i.e., the walrus with the best objective function value.

In order to sublime the steps of the WaOA, the pseudo-code is given below.

Pseudo-code of WaOA algorithm 
1: Input of the information of the optimization problem 
2: Enter the population size N and maximum number of iterations tmax 
3: Initialize the population randomly 
4: For t = 1 to tmax 
5: Update strongest walrus based on the value of objective function 
6: For i = 1 to N 
7: Apply phase 1Feeding strategy 
8: Calculate the positions XiP1 
9: Update the position of each walrus 
10: Apply phase 2Migration 
11: Calculate the positions XiP2 
12: Update the position of each walrus 
13: Apply phase 3Escaping and fighting against predators 
14: Calculate the positions XiP3 
15: Update the position of each walrus 
16: endfor 
17: Save the best walrus so far 
18: endfor 
19: Global optimal solution is the walrus with the best objective function value 
Pseudo-code of WaOA algorithm 
1: Input of the information of the optimization problem 
2: Enter the population size N and maximum number of iterations tmax 
3: Initialize the population randomly 
4: For t = 1 to tmax 
5: Update strongest walrus based on the value of objective function 
6: For i = 1 to N 
7: Apply phase 1Feeding strategy 
8: Calculate the positions XiP1 
9: Update the position of each walrus 
10: Apply phase 2Migration 
11: Calculate the positions XiP2 
12: Update the position of each walrus 
13: Apply phase 3Escaping and fighting against predators 
14: Calculate the positions XiP3 
15: Update the position of each walrus 
16: endfor 
17: Save the best walrus so far 
18: endfor 
19: Global optimal solution is the walrus with the best objective function value 

The previously presented approach has one drawback, which is the random initialization of the population. Therefore, the first novel approach presented in this paper is to avoid random initialization, but to apply logistic chaotic maps in order to initialize the population. By this way, one kind of optimization algorithm (chaotic algorithm) is used to initialize the population, and the high quality of initial population is secured. According to the proposed approach, the population is initialized as follows:
(28)

After the initialization is completed, the process of updating the walruses’ postions is carried out as described in Sec. III A. Such obtained chaotic version of WaOA is called chaotic-WaOA or C-WaOA.

The second approach presented in this work is to develop the hybrid SA-WaOA algorithm, in which the well-known simulated annealing (SA) algorithm is used to initialize the population.44 This approach is very similar to the previous one, but the chaotic algorithm is substituted with the SA algorithm. Significant difference between these two algorithms is their type—chaotic is population-based algorithm, while SA is single-solution-based algorithm. Therefore, the developed SA-WaOA algorithm employs the SA algorithm to initialize the population, instead of random initialization as described in Sec. III A. The SA algorithm is described with the following pseudo-code:

Pseudo-code of SA algorithm 
1: Input data: k = 0, ck = c0, Lk = L0 
2: Randomly initialize each staff of the population 
3: For each staff of the population 
4: while ck > 0 
5: For l = 0 to Lk 
6: Generate solution xj from neighborhood of current solution xi 
7: if f(pj)<f(pi) then pi = pj 
8: else pj becomes current solution with probability exp.((f(pi)- f(pj))/ck
9: end if 
10: end for 
11: k = k+1 
12: Update values Lk and ck 
11: end while 
12: end for 
Pseudo-code of SA algorithm 
1: Input data: k = 0, ck = c0, Lk = L0 
2: Randomly initialize each staff of the population 
3: For each staff of the population 
4: while ck > 0 
5: For l = 0 to Lk 
6: Generate solution xj from neighborhood of current solution xi 
7: if f(pj)<f(pi) then pi = pj 
8: else pj becomes current solution with probability exp.((f(pi)- f(pj))/ck
9: end if 
10: end for 
11: k = k+1 
12: Update values Lk and ck 
11: end while 
12: end for 

The third modified variant of WaOA is the adaptive modification, called A-WaOA. This type of modification is significantly different from the previous two and is based on the very important property of every metaheuristic algorithm. Namely, it is well-known that the optimal performances of any metaheuristic algorithm are achieved if global search (exploration) is applied in early iterations, and local search around the existing optimal solution (exploitation) is performed in later iterations. According to the description of the original WaOA algorithm, parameter I is used to provide balance between exploration and exploitation. However, this parameter takes random integer values that can be either 1 or 2. By this way, it is completely unpredictable how the algorithm will act in every iteration. In other words, it cannot be known if it will support local or global search. The higher values of this parameter indicate that the algorithm is focused on global search, while the lower values cause the algorithm to do the local search. Therefore, in this work, the adaptive change of this parameter is proposed. Precisely, the initial value of the parameter I is set to 2, and the algorithm then carries out the global search. Afterward, during the iterations, this parameter linearly decreases, and at the last iteration, it drops to 1, which means that the focus is to do local search. By this way, the optimal balance between global and local search is secured. Mathematically, the adaptive law for the change of the parameter I is given as follows:
(29)

This section consists of three parts. In the first part, a comparison of the current–voltage and power–voltage characteristics has been conducted, where the parameters were determined using approaches from the literature for SDM, DDM, and TDM for two well-known cells/modules. In the second part, a comparison of results obtained using the proposed hybrid variants was performed. In the third part, a comparison between the proposed methods and the best methods from the literature was conducted. Table II presents data on the parameter values of solar cells, which were obtained using numerous literary approaches for all three models of solar cells for the RTC France solar cell. Table III presents analogous results for the MSX60 solar module. Tables II and III also include data on the root mean square error (RMSE) values.

TABLE II.

The values of parameters determined using the cited literature approaches for all three models of solar cells—RTC France solar cell.

ReferencesModelNo.IPV (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
16  SDM 0.760 775 37 0.320 741 243 1.480 469 87 0.036 400 53.539 718 4 ⋯ ⋯ ⋯ ⋯ 7.746 557 808 × 10−4 
16  SDM 0.760 777 00 0.323 564 000 1.481 244 00 0.036 370 53.742 465 0 ⋯ ⋯ ⋯ ⋯ 7.750 239 999 × 10−4 
21  SDM 0.760 759 703 7 0.326 288 93 1.482 193 00 0.036 340 99 54.206 594 00 ⋯ ⋯ ⋯ ⋯ 7.768 659 613 × 10−4 
22  SDM 0.760 775 51 0.323 020 31 1.481 108 08 0.036 377 10 53.718 674 07 ⋯ ⋯ ⋯ ⋯ 7.915 026 811 × 10−4 
18  SDM 0.760 774 00 0.325 595 40 1.482 096 00 0.036 340 20 53.896 860 00 ⋯ ⋯ ⋯ ⋯ 8.126 216 289 × 10−4 
16  DDM 0.760 780 1 0.841 62 × 10−6 1.999 999 0.036 79 55.73 0.215 450 5 × 10−6 1.447 06 ⋯ ⋯ 7.561 295 767 × 10−4 
16  DDM 0.760 78 0.841 611 × 10−6 2.000 00 0.036 790 5 55.728 35 0.215 450 1 × 10−6 1.447 04 ⋯ ⋯ 7.559 104 364 × 10−4 
19  DDM 0.760 800 00 0.259 500 × 10−6 1.462 700 00 0.036 600 00 54.933 000 00 0.479 100 0 × 10−6 1.998 30 ⋯ ⋯ 7.653 474 079 × 10−4 
18  DDM 0.760 827 00 0.322 452 46 × 10−6 1.481 028 00 0.036 364 40 53.110 790 00 0.000 273 92 × 10−6 1.470 101 ⋯ ⋯ 7.955 404 200 × 10−4 
21  DDM 0.767 920 00 0.399 990 0 × 10−6 2.000 00 0.036 590 00 54.176 140 00 0.266 050 00 × 10−6 1.464 510 ⋯ ⋯ 0.006 348 583 736 
16  TDM 0.760 760 2 0.876 504 × 10−6 1.995 04 0.036 920 1 55.6798 0.204 41 × 10−6 1.442 401 0.000 1805 × 10−6 1.890 01 7.518 795 429 × 10−4 
16  TDM 0.760 760 1 0.876 499 × 10−6 1.995 01 0.036 920 2 55.680 1 0.204 401 × 10−6 1.442 41 0.000 1801 × 10−6 1.890 01 7.520 538 313 × 10−4 
41  TDM 0.760 790 0.320 000 × 10−6 1.866 6 0.036 70 55.441 1 0.230 000 × 10−6 1.452 10 0.740 0 × 10−6 2.394 90 0.002 471 743 406 2 
41  TDM 0.760 763 0.280 0 × 10−6 1.468 4 0.036 50 55.382 1 0.000 670 × 10−6 1.546 80 1.000 0 × 10−6 2.322 50 7.795 840 314 4 × 10−4 
41  TDM 0.760 770 0.235 3 × 10−6 1.454 3 0.036 68 55.444 8 0.221 300 × 10−6 2.000 00 0.457 3 × 10−6 2.000 00 8.231 360 2101 × 10−4 
ReferencesModelNo.IPV (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
16  SDM 0.760 775 37 0.320 741 243 1.480 469 87 0.036 400 53.539 718 4 ⋯ ⋯ ⋯ ⋯ 7.746 557 808 × 10−4 
16  SDM 0.760 777 00 0.323 564 000 1.481 244 00 0.036 370 53.742 465 0 ⋯ ⋯ ⋯ ⋯ 7.750 239 999 × 10−4 
21  SDM 0.760 759 703 7 0.326 288 93 1.482 193 00 0.036 340 99 54.206 594 00 ⋯ ⋯ ⋯ ⋯ 7.768 659 613 × 10−4 
22  SDM 0.760 775 51 0.323 020 31 1.481 108 08 0.036 377 10 53.718 674 07 ⋯ ⋯ ⋯ ⋯ 7.915 026 811 × 10−4 
18  SDM 0.760 774 00 0.325 595 40 1.482 096 00 0.036 340 20 53.896 860 00 ⋯ ⋯ ⋯ ⋯ 8.126 216 289 × 10−4 
16  DDM 0.760 780 1 0.841 62 × 10−6 1.999 999 0.036 79 55.73 0.215 450 5 × 10−6 1.447 06 ⋯ ⋯ 7.561 295 767 × 10−4 
16  DDM 0.760 78 0.841 611 × 10−6 2.000 00 0.036 790 5 55.728 35 0.215 450 1 × 10−6 1.447 04 ⋯ ⋯ 7.559 104 364 × 10−4 
19  DDM 0.760 800 00 0.259 500 × 10−6 1.462 700 00 0.036 600 00 54.933 000 00 0.479 100 0 × 10−6 1.998 30 ⋯ ⋯ 7.653 474 079 × 10−4 
18  DDM 0.760 827 00 0.322 452 46 × 10−6 1.481 028 00 0.036 364 40 53.110 790 00 0.000 273 92 × 10−6 1.470 101 ⋯ ⋯ 7.955 404 200 × 10−4 
21  DDM 0.767 920 00 0.399 990 0 × 10−6 2.000 00 0.036 590 00 54.176 140 00 0.266 050 00 × 10−6 1.464 510 ⋯ ⋯ 0.006 348 583 736 
16  TDM 0.760 760 2 0.876 504 × 10−6 1.995 04 0.036 920 1 55.6798 0.204 41 × 10−6 1.442 401 0.000 1805 × 10−6 1.890 01 7.518 795 429 × 10−4 
16  TDM 0.760 760 1 0.876 499 × 10−6 1.995 01 0.036 920 2 55.680 1 0.204 401 × 10−6 1.442 41 0.000 1801 × 10−6 1.890 01 7.520 538 313 × 10−4 
41  TDM 0.760 790 0.320 000 × 10−6 1.866 6 0.036 70 55.441 1 0.230 000 × 10−6 1.452 10 0.740 0 × 10−6 2.394 90 0.002 471 743 406 2 
41  TDM 0.760 763 0.280 0 × 10−6 1.468 4 0.036 50 55.382 1 0.000 670 × 10−6 1.546 80 1.000 0 × 10−6 2.322 50 7.795 840 314 4 × 10−4 
41  TDM 0.760 770 0.235 3 × 10−6 1.454 3 0.036 68 55.444 8 0.221 300 × 10−6 2.000 00 0.457 3 × 10−6 2.000 00 8.231 360 2101 × 10−4 
TABLE III.

The values of parameters determined using the cited literature approaches for all three models of solar cells—MSX60 solar module.

ReferencesModelNo.Ipv (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
16  SDM 3.8127 0.140 51 1.332 513 0.223 51 1105.586 9 ⋯ ⋯ ⋯ ⋯ 0.012 105 788 990 909 
16  SDM 3.812 68 0.14 1.3325 0.223 5 1155.625 8 ⋯ ⋯ ⋯ ⋯ 0.012 120 811 620 561 
29  SDM 3.8084 4.8723 × 10−4 1.000 3 0.3692 169.047 1 ⋯ ⋯ ⋯ ⋯ 0.101 844 933 535 061 
30  SDM 3.808 1.22 × 10−3 1.045 0.316 146.08 ⋯ ⋯ ⋯ ⋯ 0.030 722 505 654 028 
31  SDM 3.7983 6.79 × 10−2 1.28 0.251 582.727 ⋯ ⋯ ⋯ ⋯ 0.018 106 628 879 805 
16  DDM 3.812 527 0.123 12 1.322 88 0.226 805 805.46 07.30 × 10−5 1.988 00 ⋯ ⋯ 0.011 955 126 049 429 
16  DDM 3.812 526 89 0.123 119 9 1.322 86 0.226 801 807.11 7.299 × 10−5 1.988 1 ⋯ ⋯ 0.011 896 989 581 563 
16  DDM 3.812 527 0.123 11 1.322 90 0.226 800 800 7.299 90 × 10−5 1.988 00 ⋯ ⋯ 0.012 028 665 165 887 
13  DDM 3.8086 1.8952 × 10−4 0.992 47 0.376 59 166.485 4 1.8941 × 10−5 0.992 47 ⋯ ⋯ 0.053 947 147 964 604 
37  DDM 3.8046 4.12335 × 10−4 0.3392 280.202 22 3.981 11 ⋯ ⋯ 0.030 522 230 174 973 
16  TDM 3.812 52 0.123 14 1.322 74 0.226 756 831.010 00 7.299 90 × 10−5 1.988 88 1.24 × 10−4 1.930 00 0.011 683 038 647 976 
16  TDM 3.812 53 0.123 12 1.322 71 0.226 758 6 827.510 00 7.300 0 × 10−5 1.990 60 1.2488 × 10−4 1.930 00 0.011 660 925 987 728 
39  TDM 3.801 9 3.3525 × 10−1 1.934 6 0.227 24 450.13 1.00 × 10−6 1.720 8 6.457 × 10−2 1.276 4 0.017 884 722 562 835 
17  TDM 3.812 53 0.123 11 1.322 70 0.226 760 823.400 00 7.299 85 × 10−5 1.990 0 1.25 × 10−4 1.930 00 0.011 653 036 757 559 
40  TDM 3.755 264 2.18714 × 10−1 1.375 876 0.110 955 7 349.8458 2.294 004 × 10−4 1.074 414 2.210 856 × 10−4 1.094 849 0.091 223 197 368 868 
ReferencesModelNo.Ipv (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
16  SDM 3.8127 0.140 51 1.332 513 0.223 51 1105.586 9 ⋯ ⋯ ⋯ ⋯ 0.012 105 788 990 909 
16  SDM 3.812 68 0.14 1.3325 0.223 5 1155.625 8 ⋯ ⋯ ⋯ ⋯ 0.012 120 811 620 561 
29  SDM 3.8084 4.8723 × 10−4 1.000 3 0.3692 169.047 1 ⋯ ⋯ ⋯ ⋯ 0.101 844 933 535 061 
30  SDM 3.808 1.22 × 10−3 1.045 0.316 146.08 ⋯ ⋯ ⋯ ⋯ 0.030 722 505 654 028 
31  SDM 3.7983 6.79 × 10−2 1.28 0.251 582.727 ⋯ ⋯ ⋯ ⋯ 0.018 106 628 879 805 
16  DDM 3.812 527 0.123 12 1.322 88 0.226 805 805.46 07.30 × 10−5 1.988 00 ⋯ ⋯ 0.011 955 126 049 429 
16  DDM 3.812 526 89 0.123 119 9 1.322 86 0.226 801 807.11 7.299 × 10−5 1.988 1 ⋯ ⋯ 0.011 896 989 581 563 
16  DDM 3.812 527 0.123 11 1.322 90 0.226 800 800 7.299 90 × 10−5 1.988 00 ⋯ ⋯ 0.012 028 665 165 887 
13  DDM 3.8086 1.8952 × 10−4 0.992 47 0.376 59 166.485 4 1.8941 × 10−5 0.992 47 ⋯ ⋯ 0.053 947 147 964 604 
37  DDM 3.8046 4.12335 × 10−4 0.3392 280.202 22 3.981 11 ⋯ ⋯ 0.030 522 230 174 973 
16  TDM 3.812 52 0.123 14 1.322 74 0.226 756 831.010 00 7.299 90 × 10−5 1.988 88 1.24 × 10−4 1.930 00 0.011 683 038 647 976 
16  TDM 3.812 53 0.123 12 1.322 71 0.226 758 6 827.510 00 7.300 0 × 10−5 1.990 60 1.2488 × 10−4 1.930 00 0.011 660 925 987 728 
39  TDM 3.801 9 3.3525 × 10−1 1.934 6 0.227 24 450.13 1.00 × 10−6 1.720 8 6.457 × 10−2 1.276 4 0.017 884 722 562 835 
17  TDM 3.812 53 0.123 11 1.322 70 0.226 760 823.400 00 7.299 85 × 10−5 1.990 0 1.25 × 10−4 1.930 00 0.011 653 036 757 559 
40  TDM 3.755 264 2.18714 × 10−1 1.375 876 0.110 955 7 349.8458 2.294 004 × 10−4 1.074 414 2.210 856 × 10−4 1.094 849 0.091 223 197 368 868 

From the results shown in Table II for the RTC France solar cell, we have the following:

  • The best parameters for the SDM are provided by the model shown in Ref. 16.

  • The best parameters for the DDM are given by the model shown in Ref. 16.

  • The best parameters for the TDM are provided by the model shown in Ref. 16.

Based on the results shown in Table III for the MSX60 solar module, we have the following:

  • The best parameters for the SDM are provided by the model shown in Ref. 16.

  • The best parameters for the DDM are given by the model shown in Ref. 16.

  • The best parameters for the TDM are provided by the model shown in Ref. 17.

Based on the analysis of results obtained by different methods, it is observed that the application of the TDM of the solar cell provides the most accurate parameters. DDM has a lower level of precision, while SDM results in the least accuracy compared to the other models.

The graphical results are shown in Figs. 27. Specifically, Fig. 2(a) shows a comparison of current–voltage characteristics for all methods from Table II, for the SDM. In Fig. 2(b), the error in current calculation is displayed. The power–voltage characteristics for all methods, as well as the error in power calculation as a function of voltage for all used methods, are given in Figs. 2(c) and 2(d), respectively. Analogous results for the DDM of the solar cell are shown in Fig. 3 and for the TDM in Fig. 4. Corresponding graphical results for the MSX60 solar module are given in Figs. 57.

FIG. 2.

SDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 2.

SDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 3.

DDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 3.

DDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 4.

TDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 4.

TDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 5.

SDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 5.

SDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 6.

DDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 6.

DDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 7.

TDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 7.

TDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal

The figures with I–V and P–V characteristics show the sum values of individual characteristic points. A few conclusions can also be drawn on the basis of all the presented results.

  • All methods, whether for SDM, DDM, or TDM, show good matching of measured and simulated I–V and P–V characteristics.

  • With the RTC France solar cell, as well as with the MSX-60 solar module, the very good matching of the curves represented by the error value is more than obvious.

  • All tested methods, in terms of graphical comparison, are very good.

  • The largest deviation of the measured and simulated curves for RTC France solar cells, for the DDM, is given by the parameters determined by method 5, and for TDM method 3. With the MSX-60 solar module, the largest deviation of the simulated and measured curves is given by the application of method 3 for SDM, method 4 for DDM, and method 6 for TDM. All previously mentioned methods are numbered in Tables II and III 

In the rest of this section, the results of the parameter estimation of the previously mentioned two cells using the walrus optimization algorithm and its hybrid variants—chaotic WAOA (WaOA with chaotic sequences), adaptive WaOA (WaOA with adaptive modifications), and hybrid SA-WaOA (SA—Simulated Annealing)—are given. However, in order to test the detailed testing of the efficiency of the proposed algorithm and its hybrid variants, the results of the respective results were made by the application of well-known algorithms—BFO (Bacterial Foraging Optimization),45 GOA (Grasshopper Optimization Algorithm),46 and ROA (Red kite Optimization Algorithm).47 

For each algorithm, 30 repetitions were performed with a set population number of 100 and a number of iterations set at 100. The best results (parameter values) for all tested algorithms are shown in Table IV for the RTC France solar cell and in Table V for the MSX-60 solar module. In Tables IV and V, the value of RMSE is also presented. Note that, for DDM, two approaches were used—approach based on the iterative procedure described in Ref. 17 and approach based on the work of Lun13 (analytical approach).

TABLE IV.

The estimated values of parameters for all three models of solar cells—RTC France solar cell.

ModelAlgorithmMethodIpv (a)I01 (a)n1RS (Ω)RP (Ω)I02 (a)n2I03 (µA)n3RMSE
SDM BFO ⋯ 0.760 795 54 0.310 623 47 1.477 249 53 0.036 546 77 52.804 896 46 ⋯ ⋯ ⋯ ⋯ 7.730 195 3501 · 10−4 
SDM GOA ⋯ 0.761 109 35 0.309 898 04 1.477 100 14 0.036 461 69 48.825 954 40 ⋯ ⋯ ⋯ ⋯ 8.069 368 879 9 · 10−4 
SDM ROA ⋯ 0.760 700 00 0.302 599 99 1.474 600 00 0.036 800 00 54.491 100 00 ⋯ ⋯ ⋯ ⋯ 7.887 712 627 3 · 10−4 
SDM AWaOA 0.760 787 84 0.310 620 30 1.477 247 03 0.036 547 86 52.888 623 27 ⋯ ⋯ ⋯ ⋯ 7.730 063 830 8 · 10−4 
SDM CWaOA 0.760 787 98 0.310 682 30 1.477 267 05 0.036 546 96 52.889 267 70 ⋯ ⋯ ⋯ ⋯ 7.730 062 693 7 · 10−4 
SDM SAWaOA 0.760 787 95 0.310 684 51 1.477 267 76 0.036 546 94 52.889 826 40 ⋯ ⋯ ⋯ ⋯ 7.730 062 690 1 · 10−4 
SDM WaOA 0.760 787 96 0.310 684 04 1.477 267 61 0.036 546 95 52.889 696 19 ⋯ ⋯ ⋯ ⋯ 7.730 062 690 2 · 10−4 
DDMa BFO ⋯ 0.760 832 27 0.128 549 65 1.407 401 82 0.037 376 72 54.000 000 00 0.800 000 00 1.839 408 20 ⋯ ⋯ 7.498 286 041 3 · 10−4 
DDMa GOA ⋯ 0.760 780 40 0.098 531 12 1.402 962 51 0.037 251 76 52.575 514 38 0.315 202 86 1.607 081 98 ⋯ ⋯ 7.718 353 491 0 · 10−4 
DDMa ROA ⋯ 0.760 700 00 0.126 700 00 1.407 900 00 0.037 300 00 53.352 400 00 0.615 399 99 1.783 000 00 ⋯ ⋯ 7.650 683 805 1 · 10−4 
DDMa AWaOA 0.760 860 38 0.116 236 55 1.400 286 27 0.037 434 36 54.000 000 00 0.800 000 00 1.820 315 30 ⋯ ⋯ 7.483 440 787 1 · 10−4 
DDMa CWaOA 0.760 858 38 0.124 205 34 1.405 018 38 0.037 388 88 53.999 945 94 0.799 959 40 1.832 092 75 ⋯ ⋯ 7.483 709 998 3 · 10−4 
DDMa SAWaOA 0.760 871 55 0.092 972 94 1.385 085 34 0.037 544 50 54.000 000 00 0.798 724 94 1.784 359 26 ⋯ ⋯ 7.481 111 488 8 · 10−4 
DDMa WaOA 0.760 861 96 0.114 729 58 1.399 456 09 0.037 436 79 54.000 000 00 0.799 998 06 1.817 280 17 ⋯ ⋯ 7.482 161 974 4 · 10−4 
DDMb BFO ⋯ 0.760 500 46 0.421 285 96 1.992 027 76 0.019 683 80 54.172 233 99 0.301 079 85 1.460 248 47 ⋯ ⋯ 7.835 723 845 6 · 10−4 
DDMb GOA ⋯ 0.760 868 52 0.254 121 56 1.453 076 18 0.020 632 98 49.564 869 37 0.396 824 35 1.878 700 74 ⋯ ⋯ 8.200 835 772 1 · 10−4 
DDMb ROA ⋯ 0.760 400 00 0.139 800 00 1.452 700 00 0.020 800 00 56.190 500 00 0.515 300 00 1.886 300 00 ⋯ ⋯ 9.153 351 6739 · 10−4 
DDMb AWaOA 0.760 841 18 0.080 569 08 1.458 633 15 0.036 205 14 52.196 121 33 0.229 292 22 1.496 992 89 ⋯ ⋯ 7.775 282 305 7 · 10−4 
DDMb CWaOA 0.760 546 96 0.602 923 18 1.980 422 54 0.019 717 07 52.627 193 80 0.092 071 02 1.456 505 81 ⋯ ⋯ 7.575 840 849 3 · 10−4 
DDMb SAWaOA 0.760 563 92 0.195 696 07 1.442 268 84 0.020 889 13 51.607 313 10 0.393 288 88 1.869 520 15 ⋯ ⋯ 7.646 977 930 8 · 10−4 
DDMb WaOA 0.760 550 84 0.360 956 24 1.991 998 01 0.019 632 25 52.595 728 64 0.342 000 88 1.457 468 11 ⋯ ⋯ 7.576 014 864 2 · 10−4 
TDM BFO ⋯ 0.760 881 12 0.819 703 51 1.981 798 83 0.036 727 39 55.850 927 47 0.210 925 05 1.445 813 50 0.028 724 73 1.898 681 62 7.619 616 916 0 · 10−4 
TDM GOA ⋯ 0.761 616 48 0.821 140 12 1.760 561 56 0.035 887 82 52.897 997 68 0.029 217 16 1.322 534 24 0.339 728 61 1.654 388 06 1.234 593 159 2 · 10−3 
TDM ROA ⋯ 0.761 000 00 0.826 700 00 1.985 300 00 0.036 300 00 59.021 600 00 0.213 400 00 1.448 100 00 0.254 400 00 1.998 000 00 8.797 168 933 2 · 10−4 
TDM AWaOA 0.761 149 61 1.481 668 63 1.822 460 80 0.037 826 45 50.952 673 14 0.041 527 12 1.327 292 47 0.007 423 91 1.833 401 50 0.102 798 482 3 · 10−3 
TDM CWaOA 0.760 766 46 1.440 285 52 1.996 675 31 0.038 027 53 59.517 273 13 0.081 112 85 1.368 470 84 0.663 862 73 1.949 161 96 7.344 414 875 1 · 10−4 
TDM SAWaOA 0.760 772 48 1.814 777 38 1.993 304 59 0.037 651 00 58.760 298 75 0.111 537 86 1.393 209 98 0.005 026 51 1.996 954 57 7.366 785 087 3 · 10−4 
TDM WaOA 0.760 820 95 1.476 449 79 1.931 136 65 0.038 386 05 59.332 041 31 0.058 862 95 1.344 844 96 0.631 887 44 1.988 294 69 7.368 722 511 8 · 10−4 
ModelAlgorithmMethodIpv (a)I01 (a)n1RS (Ω)RP (Ω)I02 (a)n2I03 (µA)n3RMSE
SDM BFO ⋯ 0.760 795 54 0.310 623 47 1.477 249 53 0.036 546 77 52.804 896 46 ⋯ ⋯ ⋯ ⋯ 7.730 195 3501 · 10−4 
SDM GOA ⋯ 0.761 109 35 0.309 898 04 1.477 100 14 0.036 461 69 48.825 954 40 ⋯ ⋯ ⋯ ⋯ 8.069 368 879 9 · 10−4 
SDM ROA ⋯ 0.760 700 00 0.302 599 99 1.474 600 00 0.036 800 00 54.491 100 00 ⋯ ⋯ ⋯ ⋯ 7.887 712 627 3 · 10−4 
SDM AWaOA 0.760 787 84 0.310 620 30 1.477 247 03 0.036 547 86 52.888 623 27 ⋯ ⋯ ⋯ ⋯ 7.730 063 830 8 · 10−4 
SDM CWaOA 0.760 787 98 0.310 682 30 1.477 267 05 0.036 546 96 52.889 267 70 ⋯ ⋯ ⋯ ⋯ 7.730 062 693 7 · 10−4 
SDM SAWaOA 0.760 787 95 0.310 684 51 1.477 267 76 0.036 546 94 52.889 826 40 ⋯ ⋯ ⋯ ⋯ 7.730 062 690 1 · 10−4 
SDM WaOA 0.760 787 96 0.310 684 04 1.477 267 61 0.036 546 95 52.889 696 19 ⋯ ⋯ ⋯ ⋯ 7.730 062 690 2 · 10−4 
DDMa BFO ⋯ 0.760 832 27 0.128 549 65 1.407 401 82 0.037 376 72 54.000 000 00 0.800 000 00 1.839 408 20 ⋯ ⋯ 7.498 286 041 3 · 10−4 
DDMa GOA ⋯ 0.760 780 40 0.098 531 12 1.402 962 51 0.037 251 76 52.575 514 38 0.315 202 86 1.607 081 98 ⋯ ⋯ 7.718 353 491 0 · 10−4 
DDMa ROA ⋯ 0.760 700 00 0.126 700 00 1.407 900 00 0.037 300 00 53.352 400 00 0.615 399 99 1.783 000 00 ⋯ ⋯ 7.650 683 805 1 · 10−4 
DDMa AWaOA 0.760 860 38 0.116 236 55 1.400 286 27 0.037 434 36 54.000 000 00 0.800 000 00 1.820 315 30 ⋯ ⋯ 7.483 440 787 1 · 10−4 
DDMa CWaOA 0.760 858 38 0.124 205 34 1.405 018 38 0.037 388 88 53.999 945 94 0.799 959 40 1.832 092 75 ⋯ ⋯ 7.483 709 998 3 · 10−4 
DDMa SAWaOA 0.760 871 55 0.092 972 94 1.385 085 34 0.037 544 50 54.000 000 00 0.798 724 94 1.784 359 26 ⋯ ⋯ 7.481 111 488 8 · 10−4 
DDMa WaOA 0.760 861 96 0.114 729 58 1.399 456 09 0.037 436 79 54.000 000 00 0.799 998 06 1.817 280 17 ⋯ ⋯ 7.482 161 974 4 · 10−4 
DDMb BFO ⋯ 0.760 500 46 0.421 285 96 1.992 027 76 0.019 683 80 54.172 233 99 0.301 079 85 1.460 248 47 ⋯ ⋯ 7.835 723 845 6 · 10−4 
DDMb GOA ⋯ 0.760 868 52 0.254 121 56 1.453 076 18 0.020 632 98 49.564 869 37 0.396 824 35 1.878 700 74 ⋯ ⋯ 8.200 835 772 1 · 10−4 
DDMb ROA ⋯ 0.760 400 00 0.139 800 00 1.452 700 00 0.020 800 00 56.190 500 00 0.515 300 00 1.886 300 00 ⋯ ⋯ 9.153 351 6739 · 10−4 
DDMb AWaOA 0.760 841 18 0.080 569 08 1.458 633 15 0.036 205 14 52.196 121 33 0.229 292 22 1.496 992 89 ⋯ ⋯ 7.775 282 305 7 · 10−4 
DDMb CWaOA 0.760 546 96 0.602 923 18 1.980 422 54 0.019 717 07 52.627 193 80 0.092 071 02 1.456 505 81 ⋯ ⋯ 7.575 840 849 3 · 10−4 
DDMb SAWaOA 0.760 563 92 0.195 696 07 1.442 268 84 0.020 889 13 51.607 313 10 0.393 288 88 1.869 520 15 ⋯ ⋯ 7.646 977 930 8 · 10−4 
DDMb WaOA 0.760 550 84 0.360 956 24 1.991 998 01 0.019 632 25 52.595 728 64 0.342 000 88 1.457 468 11 ⋯ ⋯ 7.576 014 864 2 · 10−4 
TDM BFO ⋯ 0.760 881 12 0.819 703 51 1.981 798 83 0.036 727 39 55.850 927 47 0.210 925 05 1.445 813 50 0.028 724 73 1.898 681 62 7.619 616 916 0 · 10−4 
TDM GOA ⋯ 0.761 616 48 0.821 140 12 1.760 561 56 0.035 887 82 52.897 997 68 0.029 217 16 1.322 534 24 0.339 728 61 1.654 388 06 1.234 593 159 2 · 10−3 
TDM ROA ⋯ 0.761 000 00 0.826 700 00 1.985 300 00 0.036 300 00 59.021 600 00 0.213 400 00 1.448 100 00 0.254 400 00 1.998 000 00 8.797 168 933 2 · 10−4 
TDM AWaOA 0.761 149 61 1.481 668 63 1.822 460 80 0.037 826 45 50.952 673 14 0.041 527 12 1.327 292 47 0.007 423 91 1.833 401 50 0.102 798 482 3 · 10−3 
TDM CWaOA 0.760 766 46 1.440 285 52 1.996 675 31 0.038 027 53 59.517 273 13 0.081 112 85 1.368 470 84 0.663 862 73 1.949 161 96 7.344 414 875 1 · 10−4 
TDM SAWaOA 0.760 772 48 1.814 777 38 1.993 304 59 0.037 651 00 58.760 298 75 0.111 537 86 1.393 209 98 0.005 026 51 1.996 954 57 7.366 785 087 3 · 10−4 
TDM WaOA 0.760 820 95 1.476 449 79 1.931 136 65 0.038 386 05 59.332 041 31 0.058 862 95 1.344 844 96 0.631 887 44 1.988 294 69 7.368 722 511 8 · 10−4 
a

Iterative approach.17 

b

Analytical approach.13 

TABLE V.

The estimated values of parameters for all three models of solar cells—MSX-60 solar module.

ModelAlgorithmMethodIPV (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
SDM BFO ⋯ 3.810 826 08 0.117 399 43 1.319 079 65 0.228 704 62 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 651 129 2 
SDM GOA ⋯ 3.810 755 33 0.118 923 83 1.320 053 92 0.228 189 52 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 632 3 
SDM ROA ⋯ 3.809 900 00 0.142 800 00 1.334 200 00 0.223 500 00 895.166 900 00 ⋯ ⋯ ⋯ ⋯ 0.011 917 822 5 
SDM AWaOA 3.810 973 98 0.120 573 51 1.321 096 77 0.227 865 15 894.286 718 32 ⋯ ⋯ ⋯ ⋯ 0.011 651 382 8 
SDM CWaOA 3.810 982 86 0.119 845 76 1.320 639 85 0.228 042 71 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 149 4 
SDM SAWaOA 3.810 973 38 0.119 741 42 1.320 574 11 0.228 070 11 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 151 5 
SDM WaOA 3.810 985 29 0.119 632 77 1.320 505 84 0.228 112 78 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 163 9 
DDMa BFO ⋯ 3.809 996 71 0.100 827 50 1.308 677 21 0.229 711 91 895.160 760 73 0.196 535 55 1.818 720 02 ⋯ ⋯ 0.011 655 271 7 
DDMa GOA ⋯ 3.810 590 93 0.061 857 92 1.277 470 82 0.235 509 79 890.000 000 00 0.324 971 66 1.669 094 48 ⋯ ⋯ 0.011 627 026 1 
DDMa ROA ⋯ 3.818 400 00 0.160 700 00 1.344 000 00 0.216 200 00 900.000 000 00 0.488 800 00 1.979 000 00 ⋯ ⋯ 0.012 421 769 0 
DDMa AWaOA 3.811 439 89 0.112 033 89 1.316 015 89 0.228 458 16 891.979 261 26 0.286 939 47 1.998 168 73 ⋯ ⋯ 0.011 636 643 5 
DDMa CWaOA 3.811 450 54 0.055 918 64 1.273 337 73 0.232 232 62 899.731 349 21 0.388 007 76 1.638 250 54 ⋯ ⋯ 0.011 584 271 3 
DDMa SAWaOA 3.811 415 38 0.053 046 55 1.270 865 91 0.232 160 27 892.875 466 29 0.341 282 41 1.608 530 64 ⋯ ⋯ 0.011 585 313 3 
DDMa WaOA 3.811 353 40 0.062 580 67 1.278 515 69 0.232 598 59 896.469 952 91 0.605 128 61 1.742 003 75 ⋯ ⋯ 0.011 576 405 8 
DDMb BFO ⋯ 3.812 156 17 0.230 295 22 1.336 931 43 0.110 903 02 900.000 000 00 0.180 000 00 1.925 608 39 ⋯ ⋯ 0.011 878 345 0 
DDMb GOA ⋯ 3.806 905 22 0.092 371 37 1.322 601 30 0.115 946 24 890.000 167 61 0.244 397 41 1.750 414 68 ⋯ ⋯ 0.012 041 792 5 
DDMb ROA ⋯ 3.812 700 00 0.010 400 00 1.490 100 00 0.153 000 00 892.479 300 00 0.201 200 00 1.300 000 00 ⋯ ⋯ 0.012 261 595 0 
DDMb AWaOA 3.810 348 34 0.136 936 75 1.316 499 39 0.115 315 16 899.368 972 07 0.185 311 30 2.000 000 00 ⋯ ⋯ 0.011 653 480 2 
DDMb CWaOA 3.810 572 02 0.082 526 69 1.318 221 46 0.115 031 84 890.000 000 00 0.246 568 35 2.000 000 00 ⋯ ⋯ 0.011 648 380 3 
DDMb SAWaOA 3.810 779 31 0.052 628 22 1.316 927 27 0.115 503 42 890.190 697 87 0.270 654 27 1.950 686 68 ⋯ ⋯ 0.011 651 059 6 
DDMb WaOA 3.810 686 78 0.103 816 71 1.319 140 86 0.114 843 12 891.534 107 08 0.229 014 68 1.999 516 22 ⋯ ⋯ 0.011 649 267 8 
TDM BFO ⋯ 3.813 001 35 0.076 738 78 1.291 429 64 0.229 828 63 899.086 189 45 0.310 206 73 2.000 000 00 0.910 047 56 1.870 556 77 0.011 656 228 1 
TDM GOA ⋯ 3.823 718 21 0.039 983 78 1.287 246 20 0.196 643 60 883.511 875 76 0.478 726 06 1.605 040 61 0.227 583 42 1.478 433 93 0.014 552 471 2 
TDM ROA ⋯ 3.813 200 00 0.101 800 00 1.310 400 00 0.224 700 00 894.259 300 00 0.547 300 00 1.984 800 00 0.182 700 00 1.794 100 00 0.011 786 009 1 
TDM AWaOA 3.811 870 95 0.068 260 86 1.282 756 73 0.233 188 09 885.298 505 14 0.222 425 74 1.827 898 77 0.723 091 97 1.875 872 67 0.011 579 678 1 
TDM CWaOA 3.812 768 11 0.017 686 01 1.198 985 26 0.244 855 55 891.808 473 35 0.157 888 06 1.783 032 88 2.571 728 73 1.871 111 00 0.011 455 665 5 
TDM SAWaOA 3.812 571 62 0.020 257 87 1.207 489 05 0.243 346 24 888.226 145 94 0.212 841 35 1.764 718 94 1.980 896 17 1.843 096 64 0.011 465 719 1 
TDM WaOA 3.811 943 18 0.053 313 39 1.266 481 85 0.235 305 31 900.048 266 76 0.493 471 36 1.864 959 44 1.437 398 49 1.962 768 29 0.011 533 368 0 
ModelAlgorithmMethodIPV (A)I01 (µA)n1RS (Ω)RP (Ω)I02 (µA)n2I03 (µA)n3RMSE
SDM BFO ⋯ 3.810 826 08 0.117 399 43 1.319 079 65 0.228 704 62 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 651 129 2 
SDM GOA ⋯ 3.810 755 33 0.118 923 83 1.320 053 92 0.228 189 52 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 632 3 
SDM ROA ⋯ 3.809 900 00 0.142 800 00 1.334 200 00 0.223 500 00 895.166 900 00 ⋯ ⋯ ⋯ ⋯ 0.011 917 822 5 
SDM AWaOA 3.810 973 98 0.120 573 51 1.321 096 77 0.227 865 15 894.286 718 32 ⋯ ⋯ ⋯ ⋯ 0.011 651 382 8 
SDM CWaOA 3.810 982 86 0.119 845 76 1.320 639 85 0.228 042 71 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 149 4 
SDM SAWaOA 3.810 973 38 0.119 741 42 1.320 574 11 0.228 070 11 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 151 5 
SDM WaOA 3.810 985 29 0.119 632 77 1.320 505 84 0.228 112 78 890.000 000 00 ⋯ ⋯ ⋯ ⋯ 0.011 650 163 9 
DDMa BFO ⋯ 3.809 996 71 0.100 827 50 1.308 677 21 0.229 711 91 895.160 760 73 0.196 535 55 1.818 720 02 ⋯ ⋯ 0.011 655 271 7 
DDMa GOA ⋯ 3.810 590 93 0.061 857 92 1.277 470 82 0.235 509 79 890.000 000 00 0.324 971 66 1.669 094 48 ⋯ ⋯ 0.011 627 026 1 
DDMa ROA ⋯ 3.818 400 00 0.160 700 00 1.344 000 00 0.216 200 00 900.000 000 00 0.488 800 00 1.979 000 00 ⋯ ⋯ 0.012 421 769 0 
DDMa AWaOA 3.811 439 89 0.112 033 89 1.316 015 89 0.228 458 16 891.979 261 26 0.286 939 47 1.998 168 73 ⋯ ⋯ 0.011 636 643 5 
DDMa CWaOA 3.811 450 54 0.055 918 64 1.273 337 73 0.232 232 62 899.731 349 21 0.388 007 76 1.638 250 54 ⋯ ⋯ 0.011 584 271 3 
DDMa SAWaOA 3.811 415 38 0.053 046 55 1.270 865 91 0.232 160 27 892.875 466 29 0.341 282 41 1.608 530 64 ⋯ ⋯ 0.011 585 313 3 
DDMa WaOA 3.811 353 40 0.062 580 67 1.278 515 69 0.232 598 59 896.469 952 91 0.605 128 61 1.742 003 75 ⋯ ⋯ 0.011 576 405 8 
DDMb BFO ⋯ 3.812 156 17 0.230 295 22 1.336 931 43 0.110 903 02 900.000 000 00 0.180 000 00 1.925 608 39 ⋯ ⋯ 0.011 878 345 0 
DDMb GOA ⋯ 3.806 905 22 0.092 371 37 1.322 601 30 0.115 946 24 890.000 167 61 0.244 397 41 1.750 414 68 ⋯ ⋯ 0.012 041 792 5 
DDMb ROA ⋯ 3.812 700 00 0.010 400 00 1.490 100 00 0.153 000 00 892.479 300 00 0.201 200 00 1.300 000 00 ⋯ ⋯ 0.012 261 595 0 
DDMb AWaOA 3.810 348 34 0.136 936 75 1.316 499 39 0.115 315 16 899.368 972 07 0.185 311 30 2.000 000 00 ⋯ ⋯ 0.011 653 480 2 
DDMb CWaOA 3.810 572 02 0.082 526 69 1.318 221 46 0.115 031 84 890.000 000 00 0.246 568 35 2.000 000 00 ⋯ ⋯ 0.011 648 380 3 
DDMb SAWaOA 3.810 779 31 0.052 628 22 1.316 927 27 0.115 503 42 890.190 697 87 0.270 654 27 1.950 686 68 ⋯ ⋯ 0.011 651 059 6 
DDMb WaOA 3.810 686 78 0.103 816 71 1.319 140 86 0.114 843 12 891.534 107 08 0.229 014 68 1.999 516 22 ⋯ ⋯ 0.011 649 267 8 
TDM BFO ⋯ 3.813 001 35 0.076 738 78 1.291 429 64 0.229 828 63 899.086 189 45 0.310 206 73 2.000 000 00 0.910 047 56 1.870 556 77 0.011 656 228 1 
TDM GOA ⋯ 3.823 718 21 0.039 983 78 1.287 246 20 0.196 643 60 883.511 875 76 0.478 726 06 1.605 040 61 0.227 583 42 1.478 433 93 0.014 552 471 2 
TDM ROA ⋯ 3.813 200 00 0.101 800 00 1.310 400 00 0.224 700 00 894.259 300 00 0.547 300 00 1.984 800 00 0.182 700 00 1.794 100 00 0.011 786 009 1 
TDM AWaOA 3.811 870 95 0.068 260 86 1.282 756 73 0.233 188 09 885.298 505 14 0.222 425 74 1.827 898 77 0.723 091 97 1.875 872 67 0.011 579 678 1 
TDM CWaOA 3.812 768 11 0.017 686 01 1.198 985 26 0.244 855 55 891.808 473 35 0.157 888 06 1.783 032 88 2.571 728 73 1.871 111 00 0.011 455 665 5 
TDM SAWaOA 3.812 571 62 0.020 257 87 1.207 489 05 0.243 346 24 888.226 145 94 0.212 841 35 1.764 718 94 1.980 896 17 1.843 096 64 0.011 465 719 1 
TDM WaOA 3.811 943 18 0.053 313 39 1.266 481 85 0.235 305 31 900.048 266 76 0.493 471 36 1.864 959 44 1.437 398 49 1.962 768 29 0.011 533 368 0 
a

Iterative approach.17 

b

Analytical approach.13 

Based on the presented results, following conclusions can be derived:

  • Generally, classic WaOA produces better results than BFO, GOA, and ROA.

  • Results indicate that hybridization of each algorithm results in performance improvement.

  • Analysis shows that the most efficient hybridization is CWaOA, while AWaOA is the least efficient hybrid.

  • If you compare the iterative and analytical approaches in solar cell modeling, the iterative approach has greater accuracy.

A graphical comparison of the current–voltage and power–voltage characteristics of the observed solar cell and solar module, as well as the corresponding error values for each model of solar cell and module, is given in Figs. 815. Figures 811 show the results for the RTC France solar cell, and Figs. 1215 show the results for the MSX 60 solar module. In Figs. 815 shown, method 1 corresponds to the parameters determined using AWaOA, method 2 corresponds to those determined using CWaOA, method 3 corresponds to those determined using SAWaOA, and method 4 corresponds to those determined using WaOA. The graphical results fully correspond to the results shown in Tables IV and V with parameter and RMSE values. This is confirmed by the graphs that show errors of the algorithms in determining current and power values. A common characteristic of all methods is that errors reach their maximum values at very low and at high current values. Likewise, on certain zoomed-in parts, it is clearly indicated that the DDM iterative approach enables better results compared to the analytical DDM approach.

FIG. 8.

SDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 8.

SDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 9.

Iterative DDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 9.

Iterative DDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 10.

DDM of the RTC France solar cell proposed by Lun et al.13 (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 10.

DDM of the RTC France solar cell proposed by Lun et al.13 (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 11.

TDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 11.

TDM of the RTC France solar cell. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 12.

SDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 12.

SDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 13.

Iterative DDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 13.

Iterative DDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 14.

DDM of the MSX60 solar module proposed by Lun et al.13 (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 14.

DDM of the MSX60 solar module proposed by Lun et al.13 (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal
FIG. 15.

TDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

FIG. 15.

TDM of the MSX60 solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics.

Close modal

A statistical comparison of the results, obtained for WaOa and its hybrid variants, in terms of mean, best, median, STD, and worst, is given in Tables VI and VII, for the RTC France solar cell and MSX60 solar module, respectively. Based on the presented results, the following conclusion can be derived:

  • The best results achieved by all algorithms in SDM are approximately the same, and the difference is extremely small.

  • In DDM and TDM, the best results differ and it can be seen that hybridization improves the accuracy of the solution.

  • The same results apply to the observed solar cell and solar module.

TABLE VI.

Statistical comparison of the results in terms of mean, best, median, STD, and worst is for the RTC France solar cell.

ModelAlgorithmBestWorstMeanMedianSTD
SDM WaOA 7.730 062 690 2 · 10−4 7.731 252 114 4 · 10−4 7.730 203 925 8 · 10−4 7.730 063 619 8 · 10−4 3.0538123515 · 10−8 
SDM CWaOA 7.730 062 693 7 · 10−4 7.779 280 070 4 · 10−4 7.733 257 565 2 · 10−4 7.730 070 479 9 · 10−4 1.137 498 673 7 · 10−6 
SDM AWaOA 7.730 063 830 8 · 10−4 7.906 620 335 0 · 10−4 7.741 673 024 9 · 10−4 7.730 558 305 0 · 10−4 3.269 881 726 2 · 10−6 
SDM SAWaOA 7.730 062 690 1 · 10−4 7.734 754 216 9 · 10−4 7.730 228 453 5 · 10−4 7.730 062 906 1 · 10−4 8.551 791 466 2 · 10−8 
DDMa WaOA 7.482 161 974 4 · 10−4 7.724 567 274 1 · 10−4 7.548 627 895 0 · 10−4 7.528 359 618 7 · 10−4 6.848 711 186 2 · 10−6 
DDMa CWaOA 7.483 709 998 3 · 10−4 7.847 456 188 8 · 10−4 7.573 346 718 3 · 10−4 7.535 165 974 3 · 10−4 9.832 241 888 1 · 10−6 
DDMa AWaOA 7.483 440 787 1 · 10−4 9.162 289 680 1 · 10−4 7.619 105 043 2 · 10−4 7.553 635 429 9 · 10−4 9.910 543 713 8 · 10−6 
DDMa SAWaOA 7.481 111 488 8 · 10−4 7.750 058 279 1 · 10−4 7.594 598 445 2 · 10−4 7.589 661 167 6 · 10−4 7.729 925 192 6 · 10−6 
DDMb WaOA 7.576 014 864 2 · 10−4 1.100 994 586 1 · 10−3 8.159 637 579 4 · 10−4 7.964 366 332 8 · 10−4 6.741 282 366 9 · 10−5 
DDMb CWaOA 7.575 840 849 3 · 10−4 1.134 162 057 2 · 10−3 8.157 350 718 8 · 10−4 7.784 559 450 8 · 10−4 8.973 622 901 1 · 10−5 
DDMb AWaOA 7.775 282 305 7 · 10−4 2.153 326 309 7 · 10−3 1.175 112 441 0 · 10−3 1.087 369 819 4 · 10−3 3.066 424 952 1 · 10−4 
DDMb SAWaOA 7.646 977 930 8 · 10−4 1.002 122 106 3 · 10−3 8.506 956 028 6 · 10−4 8.619 990 760 3 · 10−4 6.923 984 278 5 · 10−5 
TDM WaOA 7.368 722 511 8 · 10−4 3.317 515 344 8 · 10−3 1.222 554 732 2 · 10−3 7.816 522 148 5 · 10−4 7.992 967 083 2 · 10−4 
TDM CWaOA 7.3444148751 · 10−4 3.317 511 373 4 · 10−3 1.103 556 873 0 · 10−3 7.820 647 565 1 · 10−4 7.286 074 551 8 · 10−4 
TDM AWaOA 1.027 984 823 4 · 10−3 5.195 656 906 1 · 10−3 2.965 400 319 0 · 10−3 3.425 108 345 6 · 10−3 1.044 615 534 4 · 10−3 
TDM SAWaOA 7.366 785 087 3 · 10−4 3.317 511 368 1 · 10−3 1.215 850 688 1 · 10−3 7.685 444 061 7 · 10−4 8.714 512 623 3 · 10−4 
ModelAlgorithmBestWorstMeanMedianSTD
SDM WaOA 7.730 062 690 2 · 10−4 7.731 252 114 4 · 10−4 7.730 203 925 8 · 10−4 7.730 063 619 8 · 10−4 3.0538123515 · 10−8 
SDM CWaOA 7.730 062 693 7 · 10−4 7.779 280 070 4 · 10−4 7.733 257 565 2 · 10−4 7.730 070 479 9 · 10−4 1.137 498 673 7 · 10−6 
SDM AWaOA 7.730 063 830 8 · 10−4 7.906 620 335 0 · 10−4 7.741 673 024 9 · 10−4 7.730 558 305 0 · 10−4 3.269 881 726 2 · 10−6 
SDM SAWaOA 7.730 062 690 1 · 10−4 7.734 754 216 9 · 10−4 7.730 228 453 5 · 10−4 7.730 062 906 1 · 10−4 8.551 791 466 2 · 10−8 
DDMa WaOA 7.482 161 974 4 · 10−4 7.724 567 274 1 · 10−4 7.548 627 895 0 · 10−4 7.528 359 618 7 · 10−4 6.848 711 186 2 · 10−6 
DDMa CWaOA 7.483 709 998 3 · 10−4 7.847 456 188 8 · 10−4 7.573 346 718 3 · 10−4 7.535 165 974 3 · 10−4 9.832 241 888 1 · 10−6 
DDMa AWaOA 7.483 440 787 1 · 10−4 9.162 289 680 1 · 10−4 7.619 105 043 2 · 10−4 7.553 635 429 9 · 10−4 9.910 543 713 8 · 10−6 
DDMa SAWaOA 7.481 111 488 8 · 10−4 7.750 058 279 1 · 10−4 7.594 598 445 2 · 10−4 7.589 661 167 6 · 10−4 7.729 925 192 6 · 10−6 
DDMb WaOA 7.576 014 864 2 · 10−4 1.100 994 586 1 · 10−3 8.159 637 579 4 · 10−4 7.964 366 332 8 · 10−4 6.741 282 366 9 · 10−5 
DDMb CWaOA 7.575 840 849 3 · 10−4 1.134 162 057 2 · 10−3 8.157 350 718 8 · 10−4 7.784 559 450 8 · 10−4 8.973 622 901 1 · 10−5 
DDMb AWaOA 7.775 282 305 7 · 10−4 2.153 326 309 7 · 10−3 1.175 112 441 0 · 10−3 1.087 369 819 4 · 10−3 3.066 424 952 1 · 10−4 
DDMb SAWaOA 7.646 977 930 8 · 10−4 1.002 122 106 3 · 10−3 8.506 956 028 6 · 10−4 8.619 990 760 3 · 10−4 6.923 984 278 5 · 10−5 
TDM WaOA 7.368 722 511 8 · 10−4 3.317 515 344 8 · 10−3 1.222 554 732 2 · 10−3 7.816 522 148 5 · 10−4 7.992 967 083 2 · 10−4 
TDM CWaOA 7.3444148751 · 10−4 3.317 511 373 4 · 10−3 1.103 556 873 0 · 10−3 7.820 647 565 1 · 10−4 7.286 074 551 8 · 10−4 
TDM AWaOA 1.027 984 823 4 · 10−3 5.195 656 906 1 · 10−3 2.965 400 319 0 · 10−3 3.425 108 345 6 · 10−3 1.044 615 534 4 · 10−3 
TDM SAWaOA 7.366 785 087 3 · 10−4 3.317 511 368 1 · 10−3 1.215 850 688 1 · 10−3 7.685 444 061 7 · 10−4 8.714 512 623 3 · 10−4 
a

Iterative DDM—Calasan.17 

b

Analytical DDM approach—Lun et al.13 

TABLE VII.

Statistical comparison of the results in terms of mean, best, median, STD, and worst is for the MSX-60 solar module.

ModelAlgorithmBestWorstMeanMedianSTD
SDM WaOA 0.011 650 163 9 0.011 877 258 7 0.011 692 333 2 0.011 661 490 4 6.556 651 182 5 · 10−5 
SDM CWaOA 0.011 650 149 4 0.012 027 684 1 0.011 767 859 6 0.011 678 542 4 1.410 392 147 8 · 10−4 
SDM AWaOA 0.011 651 382 8 0.012 233 109 0 0.011 825 698 1 0.011 787 354 0 1.566 434 034 1 · 10−4 
SDM SAWaOA 0.011 650 151 5 0.012 026 551 2 0.011 706 750 0 0.011 662 094 3 8.491 062 130 0 · 10−5 
DDMa WaOA 0.011 576 405 8 0.012 139 729 6 0.011 657 676 9 0.011 630 454 3 1.040 269 125 1 · 10−4 
DDMa CWaOA 0.011 584 271 3 0.012 961 646 0 0.011 759 640 1 0.011 652 914 1 2.819 459 671 6 · 10−4 
DDMa AWaOA 0.011 636 643 5 0.013 184 362 1 0.012 092 941 9 0.012 004 187 3 4.482 871 606 8 · 10−4 
DDMa SAWaOA 0.011 585 313 3 0.012 692 722 9 0.011 727 554 8 0.011 654 805 5 2.149 159 203 3 · 10−4 
DDMb WaOA 0.011 649 267 8 0.013 141 816 1 0.011 853 524 5 0.011 702 460 3 3.599 933 302 1 · 10−4 
DDMb CWaOA 0.011 648 380 3 0.014 012 680 1 0.012 108 413 0 0.011 932 345 4 5.257 616 334 7 · 10−4 
DDMb AWaOA 0.011 653 480 2 0.013 593 750 8 0.012 130 153 7 0.011 990 795 2 4.941 893 544 8 · 10−4 
DDMb SAWaOA 0.011 651 059 6 0.013 230 030 0 0.012 166 524 9 0.012 142 209 6 4.540 619 883 1 · 10−4 
TDM WaOA 0.011 533 368 0 0.015 038 193 0 0.012 137 966 0 0.011 825 659 0 8.204 308 100 5 · 10−4 
TDM CWaOA 0.011 455 665 5 0.014 224 109 9 0.011 919 068 7 0.011 694 504 5 5.913 037 278 5 · 10−4 
TDM AWaOA 0.011 579 678 1 0.015 287 164 2 0.013 006 582 3 0.012 927 760 3 9.326 587 293 7 · 10−4 
TDM SAWaOA 0.011 465 719 1 0.012 835 244 3 0.011 737 735 5 0.011 646 806 4 2.801 014 814 8 · 10−4 
ModelAlgorithmBestWorstMeanMedianSTD
SDM WaOA 0.011 650 163 9 0.011 877 258 7 0.011 692 333 2 0.011 661 490 4 6.556 651 182 5 · 10−5 
SDM CWaOA 0.011 650 149 4 0.012 027 684 1 0.011 767 859 6 0.011 678 542 4 1.410 392 147 8 · 10−4 
SDM AWaOA 0.011 651 382 8 0.012 233 109 0 0.011 825 698 1 0.011 787 354 0 1.566 434 034 1 · 10−4 
SDM SAWaOA 0.011 650 151 5 0.012 026 551 2 0.011 706 750 0 0.011 662 094 3 8.491 062 130 0 · 10−5 
DDMa WaOA 0.011 576 405 8 0.012 139 729 6 0.011 657 676 9 0.011 630 454 3 1.040 269 125 1 · 10−4 
DDMa CWaOA 0.011 584 271 3 0.012 961 646 0 0.011 759 640 1 0.011 652 914 1 2.819 459 671 6 · 10−4 
DDMa AWaOA 0.011 636 643 5 0.013 184 362 1 0.012 092 941 9 0.012 004 187 3 4.482 871 606 8 · 10−4 
DDMa SAWaOA 0.011 585 313 3 0.012 692 722 9 0.011 727 554 8 0.011 654 805 5 2.149 159 203 3 · 10−4 
DDMb WaOA 0.011 649 267 8 0.013 141 816 1 0.011 853 524 5 0.011 702 460 3 3.599 933 302 1 · 10−4 
DDMb CWaOA 0.011 648 380 3 0.014 012 680 1 0.012 108 413 0 0.011 932 345 4 5.257 616 334 7 · 10−4 
DDMb AWaOA 0.011 653 480 2 0.013 593 750 8 0.012 130 153 7 0.011 990 795 2 4.941 893 544 8 · 10−4 
DDMb SAWaOA 0.011 651 059 6 0.013 230 030 0 0.012 166 524 9 0.012 142 209 6 4.540 619 883 1 · 10−4 
TDM WaOA 0.011 533 368 0 0.015 038 193 0 0.012 137 966 0 0.011 825 659 0 8.204 308 100 5 · 10−4 
TDM CWaOA 0.011 455 665 5 0.014 224 109 9 0.011 919 068 7 0.011 694 504 5 5.913 037 278 5 · 10−4 
TDM AWaOA 0.011 579 678 1 0.015 287 164 2 0.013 006 582 3 0.012 927 760 3 9.326 587 293 7 · 10−4 
TDM SAWaOA 0.011 465 719 1 0.012 835 244 3 0.011 737 735 5 0.011 646 806 4 2.801 014 814 8 · 10−4 
a

Iterative DDM—Calasan.17 

b

Analytical DDM approach—Lun et al.13 

3D graphs (objective function–number of iterations–number of starts) for the SDM, DDM, and TDM of solar cells, as well as the best curves for all algorithms, are shown in the  Appendix. The best convergence curves for the SDM, obtained for all observed algorithms and hybrid variants of the WaOA algorithm, are presented in Fig. 16. Based on Fig. 16, it is quite clear that the chaotic WaOA variant of the algorithm provides the best results not only from the point of view of accuracy but also from the point of view of convergence speed (see the zoomed parts in Fig. 16).

FIG. 16.

The best convergence curves of all the observed algorithms for the RTC France solar cell and SDM.

FIG. 16.

The best convergence curves of all the observed algorithms for the RTC France solar cell and SDM.

Close modal

Based on the research presented in Sec. IV, it has been clearly demonstrated that the best accuracy is achieved by using the chaotic variant of the WaOA algorithm. For this reason, this algorithm was utilized to estimate the parameters of the KC200GT solar panel and to verify the application of these parameters in simulating the operation of this panel under various values of insolation and temperature.

Therefore, the application of the mentioned algorithm was conducted for the estimation of panel parameters at an irradiance of 1000 W/m2 and a temperature of 25 °C. Subsequently, a procedure was used for mapping parameters for different values of temperature and insolation. Table VIII presents the results of the parameter estimation for the KC200GT solar panel for the single-diode, double-diode, and triple-diode models, at an irradiance of 1000 W/m2 and a temperature of 25 °C. Figure 17 displays the IV and PV characteristics for all three models of the solar panel. It also shows the difference between measured and estimated values of current and power. As can be seen, the biggest differences between the measured and estimated values are achieved for voltage values that are close to the no-load voltage. The analysis shows that the application of the triple-diode model (TDM) of solar cells results in the most precise parameters. Additionally, from the obtained results, it can be observed that the iterative method provides a better match with the measured values compared to the analytical method used (Lun et al.13).

TABLE VIII.

The parameter estimation results for the KC200GT solar panel using SDM, DDM, and TDM.

SDMDDM—iterativeDDM—analyticalTDM
IPV(A) 8.211 923 050 6 8.211 906 775 8 8.209 341 381 5 8.209 148 563 1 
I01 (μA) 0.057 524 160 6 0.004 816 330 8 0.002 684 614 9 0.253 604 672 0 
n1 1.263 380 690 2 1.200 482 433 8 1.262 147 168 1 1.433 817 542 7 
RS(Ω) 0.237 124 082 6 0.237 692 842 3 0.119 146 272 3 0.247 110 827 3 
RP(Ω) 373.467 438 183 373.842 508 315 373.630 640 990 436.916 824 264 
I02 (μA) ⋯ 0.056 612 587 3 0.192 527 728 3 0.001 017 009 3 
n2 ⋯ 1.279 573 814 5 2.000 000 000 0 1.069 862 586 8 
I03 (μA) ⋯ ⋯ ⋯ 1.00000 · 10−8 
n3 ⋯ ⋯ ⋯ 1.000 000 000 
RMSE 0.005 103 2 0.005 079 5 0.005 141 7 0.004 583 3 
SDMDDM—iterativeDDM—analyticalTDM
IPV(A) 8.211 923 050 6 8.211 906 775 8 8.209 341 381 5 8.209 148 563 1 
I01 (μA) 0.057 524 160 6 0.004 816 330 8 0.002 684 614 9 0.253 604 672 0 
n1 1.263 380 690 2 1.200 482 433 8 1.262 147 168 1 1.433 817 542 7 
RS(Ω) 0.237 124 082 6 0.237 692 842 3 0.119 146 272 3 0.247 110 827 3 
RP(Ω) 373.467 438 183 373.842 508 315 373.630 640 990 436.916 824 264 
I02 (μA) ⋯ 0.056 612 587 3 0.192 527 728 3 0.001 017 009 3 
n2 ⋯ 1.279 573 814 5 2.000 000 000 0 1.069 862 586 8 
I03 (μA) ⋯ ⋯ ⋯ 1.00000 · 10−8 
n3 ⋯ ⋯ ⋯ 1.000 000 000 
RMSE 0.005 103 2 0.005 079 5 0.005 141 7 0.004 583 3 
FIG. 17.

SDM, analytical DDM, iterative DDM, and TDM of the KC200GT solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics at 1000 W/m2 and 25 °C.

FIG. 17.

SDM, analytical DDM, iterative DDM, and TDM of the KC200GT solar module. (a) I–V characteristics, (b) P–V characteristics, (c) current difference–voltage characteristics, and (d) power difference–voltage characteristics at 1000 W/m2 and 25 °C.

Close modal

In Fig. 18(a), the IV and PV characteristics of the KC200GT solar panel, obtained by rescaling the estimated parameters (calculated using the TDM) for different levels of insolation, are displayed. Similarly, Fig. 18(b) represents the corresponding characteristics of the KC200GT panel, which are the result of mapping for different temperatures. The procedure for solar cell parameter rescaling for different temperature and insolation levels is described in Ref. 48. In all cases (see Fig. 18), a very high match of the obtained characteristics with the measured values is observed, indicating a small error value. Therefore, it is more than clear that the proposed algorithm for parameter estimation enables obtaining results with high efficiency and accuracy.

FIG. 18.

I–V and P–V characteristics of the KC200GT solar module for different (a) insolation and (b) temperatures.

FIG. 18.

I–V and P–V characteristics of the KC200GT solar module for different (a) insolation and (b) temperatures.

Close modal

This work addresses the precise determination of parameters for three models of solar cells (SDM, DDM, and TDM), employing both the Lambert W equation and iterative Lambert W approaches. A review of the literature indicates that the most effective solutions in this field are offered by hybrid metaheuristic algorithms. However, typically, only one recommended method or hybrid variant is presented and proposed in existing studies. Diverging from this conventional approach, our study evaluated three hybrid variants of the same metaheuristic algorithm, WaOA (CWaOA, AWaOA, and SAWaOA), to identify the optimal method. Testing was conducted on a well-documented solar cell (RTC France) and a module (MSX60). The analysis revealed that the chaotic variant of WaOA (CWaOA) yielded the best results, specifically in the accurate parameter estimation for the KC200GT solar panel under an irradiance of 1000 W/m2 and a temperature of 25 °C. The close alignment of our results with the measured values substantiates the efficacy of the CWaOA hybrid variant. To further validate this approach, we rescaled the obtained parameters for the TDM, which proved to be not only the most precise but also the most demanding in terms of usage, to different irradiance and temperature settings. This adjustment achieved an exceptionally high degree of correlation with the measured data, further confirming the superiority and efficiency of the proposed CWaOA hybrid metaheuristic algorithm.

Future research could explore the application of these algorithms for estimating parameters of various solar cell models across different levels of insolation and temperature.

The authors have no conflicts to disclose.

Snežana Vujošević: Formal analysis (equal); Investigation (equal); Software (equal); Writing – original draft (equal). Martin Ćalasan: Resources (equal); Software (equal); Supervision (equal); Writing – review & editing (equal). Mihailo Micev: Software (equal); Supervision (equal).

The data that support the findings of this study are available from the corresponding author upon reasonable request.

In the  Appendix, the convergence curves of a different algorithm are presented (Figs. 1921).

FIG. 19.

SDM RTC France solar cell 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves for (a) WaOA, (b) cWaOA, (c) AWaOA, (d) SAWaOA, (e) BFO, and (f) ROA.

FIG. 19.

SDM RTC France solar cell 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves for (a) WaOA, (b) cWaOA, (c) AWaOA, (d) SAWaOA, (e) BFO, and (f) ROA.

Close modal
FIG. 20.

RTC France solar cell 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves determined via cWaOA for (a) iterative DDM, (b) analytical DDM, and (c) TDM.

FIG. 20.

RTC France solar cell 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves determined via cWaOA for (a) iterative DDM, (b) analytical DDM, and (c) TDM.

Close modal
FIG. 21.

SDM MSX60 solar module 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves for (a) WaOA, (b) cWaOA, (c) AWaOA, (d) SAWaOA, (e) BFO, and (f) ROA.

FIG. 21.

SDM MSX60 solar module 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves for (a) WaOA, (b) cWaOA, (c) AWaOA, (d) SAWaOA, (e) BFO, and (f) ROA.

Close modal
FIG. 22.

MSX60 solar module 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves determined via cWaOA for (a) iterative DDM, (b) analytical DDM, and (c) TDM.

FIG. 22.

MSX60 solar module 3D convergence curves (objective function–iteration number–number of run) and the best convergence curves determined via cWaOA for (a) iterative DDM, (b) analytical DDM, and (c) TDM.

Close modal
1.
G. G.
Pakrer
,
B.
Tan
, and
O.
Kazan
, “
Electric power industry: Operational and public policy challenges and opportunities
,”
Prod. Oper. Manage.
28
(
11
),
2738
2777
(
2019
).
2.
T.
Kalt
, “
Transition conflicts: A gramscian political ecology perspective on the contested nature of sustainability transitions
,”
Environ. Innovation Soc. Trans.
50
,
100812
(
2024
).
3.
K. A. M.
Nor
and
N.
Abdullah
, “
Power quality improvement of three-phase electrical systems using active-passive hybrid harmonic filter
,”
Results Eng.
22
,
102242
(
2024
).
4.
See https://www.irena.org/Energy-Transition/Technology/Solar-energy for International Renewable Energy Agency.
5.
M. A.
Basit
,
S.
Dilshad
,
R.
Badar
, and
S. M.
Sami ur Rehman
, “
Limitations, challenges, and solution approaches in grid-connected renewable energy systems
,”
Int. J. Energy Res.
44
(
6
),
4132
4162
(
2020
).
6.
C. R.
Cirak
and
H.
Calik
, “
Hotspots in maximum power point tracking algorithms for photovoltaic systems – A comprehensive and comparative review
,”
Eng. Sci. Technol. Int. J.
43
,
101436
(
2023
).
7.
M.
Rawa
,
M.
Calasan
,
A.
Abusorrah
,
A. A.
Alhussainy
,
Y.
Al-Turki
,
Z. M.
Ali
,
H.
Sindi
,
S.
Mekhilef
,
S. H. E. A.
Aleem
, and
H.
Bassi
, “
Single diode solar cells—Improved model and exact current–voltage analytical solution based on Lambert’s W function
,”
Sensors
22
,
4173
(
2022
).
8.
M.
Kumar
and
A.
Kumar
, “
An efficient parameters extraction technique of photovoltaic models for performance assessment
,”
Sol. Energy
158
,
192
206
(
2017
).
9.
M.
Premkumar
,
P.
Jangir
,
C.
Ramakrishnan
,
C.
Kumar
,
R.
Sowmya
,
S.
Deb
, and
M.
Kumar
, “
An enhanced Gradient-based Optimizer for parameter estimation of various solar photovoltaic models
,”
Energy Rep.
8
,
15249
15285
(
2022
).
10.
M. T.
Sarniak
,
J.
Wernik
, and
K. J.
Wołosz
, “
Application of the double diode model of photovoltaic cells for simulation studies on the impact of partial shading of silicon photovoltaic modules on the waveforms of their current–voltage characteristic
,”
Energies
12
,
2421
(
2019
).
11.
Z.
Duan
,
H.
Yu
,
Q.
Zhang
, and
L.
Tian
, “
Parameter extraction of solar photovoltaic model based on nutcracker optimization algorithm
,”
Appl. Sci.
13
,
6710
(
2023
).
12.
M.
Ćalasan
,
M.
Al-Dhaifallah
,
Z. M.
Ali
, and
S. H. E.
Abdel Aleem
, “
Comparative analysis of different iterative methods for solving current–voltage characteristics of double and triple diode models of solar cells
,”
Mathematics
10
,
3082
(
2022
).
13.
S.
Lun
,
S.
Wang
,
G.
Yang
, and
T.
Guo
, “
A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays
,”
Sol. Energy
116
,
69
82
(
2015
).
14.
Z.
Song
,
K.
Fang
,
X.
Sun
,
Y.
Liang
,
W.
Lin
,
C.
Xu
,
G.
Huang
, and
F.
Yu
, “
An effective method to accurately extract the parameters of single diode model of solar cells
,”
Nanomaterials
11
,
2615
(
2021
).
15.
Y.
Chaibi
,
A.
Allouhi
, and
M.
Salhi
, “
A simple iterative method to determine the electrical parameters of photovoltaic cell
,”
J. Cleaner Prod.
269
,
122363
(
2020
).
16.
M.
Rawa
,
A.
Abusorrah
,
Y.
Al-Turki
,
M.
Calasan
,
M.
Micev
,
Z. M.
Ali
,
S.
Mekhilef
,
H.
Bassi
,
H.
Sindi
, and
S. H. E. A.
Aleem
, “
Estimation of parameters of different equivalent circuit models of solar cells and various photovoltaic modules using hybrid variants of honey Badger algorithm and artificial Gorilla troops optimizer
,”
Mathematics
10
,
1057
(
2022
).
17.
M.
Calasan
,
S. H. E.
Abdel Aleem
, and
A. F.
Zobaa
, “
A new approach for parameters estimation of double and triple diode models of photovoltaic cells based on iterative Lambert W function
,”
Sol. Energy
218
,
392
412
(
2021
).
18.
D.
Saadaoui
,
M.
Elyaqouti
,
K.
Assalaou
,
D.
Benhmamou
, and
S.
Lidaighbi
, “
Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation
,”
Energy Convers. Manage.: X
12
,
100129
(
2021
).
19.
G.
Xiong
,
L.
Li
,
A. W.
Mohamed
,
X.
Yuan
, and
J.
Zhang
, “
A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm
,”
Energy Rep.
7
,
3286
3301
(
2021
).
20.
X.
Weng
,
A. A.
Heidari
,
G.
Liang
,
H.
Chen
,
X.
Ma
,
M.
Mafarja
, and
H.
Turabieh
, “
Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models
,”
Energy Convers. Manage.
243
,
114223
(
2021
).
21.
F. E.
Ndi
,
S. N.
Perabi
,
S. E.
Ndjakomo
,
G.
Ondoua Abessolo
, and
G.
Mengounou Mengata
, “
Estimation of single-diode and two diode solar cell parameters by equilibrium optimizer method
,”
Energy Rep.
7
,
4761
4768
(
2021
).
22.
M.
Naeijian
,
A.
Rahimnejad
,
S. M.
Ebrahimi
,
N.
Pourmousa
, and
S. A.
Gadsden
, “
Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm
,”
Energy Rep.
7
,
4047
4063
(
2021
).
23.
M.
Calasan
,
S. H. E.
Abdel Aleem
, and
A. F.
Zobaa
, “
On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function
,”
Energy Convers. Manage.
210
,
112716
(
2020
).
24.
J.
Liang
,
S.
Ge
,
B.
Qu
,
K.
Yu
,
F.
Liu
,
H.
Yang
,
P.
Wei
, and
Z.
Li
, “
Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models
,”
Energy Convers. Manage.
203
,
112138
(
2020
).
25.
S.
Li
,
W.
Gong
,
X.
Yan
,
C.
Hu
,
D.
Bai
,
L.
Wang
, and
L.
Gao
, “
Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization
,”
Energy Convers. Manage.
186
,
293
305
(
2019
).
26.
X.
Chen
,
H.
Yue
, and
K.
Yu
, “
Perturbed stochastic fractal search for solar PV parameter estimation
,”
Energy
189
,
116247
(
2019
).
27.
K.
Yu
,
B.
Qu
,
C.
Yue
,
S.
Ge
,
X.
Chen
, and
J.
Liang
, “
A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module
,”
Appl. Energy
237
,
241
257
(
2019
).
28.
A. M.
Beigi
and
A.
Maroosi
, “
Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms
,”
Sol. Energy
171
,
435
446
(
2018
).
29.
S.
Bana
and
R. P.
Saini
, “
A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems
,”
Energy Rep.
2
,
171
187
(
2016
).
30.
R.
Szabo
and
A.
Gontean
, “
Photovoltaic cell and module I-V characteristic approximation using Bézier curves
,”
Appl. Sci.
8
,
655
(
2018
).
31.
E. A.
Silva
,
F.
Bradaschia
,
M. C.
Cavalcanti
, and
A. J.
Nascimento
, “
Parameter estimation method to improve the accuracy of photovoltaic electrical model
,”
IEEE J. Photovoltaics
6
,
278
285
(
2016
).
32.
W.
Long
,
T.
Wu
,
M.
Xu
,
M.
Tang
, and
S.
Cai
, “
Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm
,”
Energy
229
,
120750
(
2021
).
33.
C.
Kumar
,
T. D.
Raj
,
M.
Premkumar
, and
T. D.
Raj
, “
A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters
,”
Optik
223
,
165277
(
2020
).
34.
S.
Gude
and
K. C.
Jana
, “
Parameter extraction of photovoltaic cell using an improved cuckoo search optimization
,”
Sol. Energy
204
,
280
293
(
2020
).
35.
S.
Jiao
,
G.
Chong
,
C.
Huang
,
H.
Hu
,
M.
Wang
,
A. A.
Heidari
,
H.
Chen
, and
X.
Zhao
, “
Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
,”
Energy
203
,
117804
(
2020
).
36.
M.
Calasan
,
D.
Jovanovic
,
V.
Rubežic
,
S.
Mujovic
, and
S.
Dukanovic
, “
Estimation of single-diode and two-diode solar cell parameters by using a chaotic optimization approach
,”
Energies
12
,
4209
(
2019
).
37.
M.
Hejri
,
H.
Mokhtari
,
M.
Azizian
,
M.
Ghandhari
, and
L.
Soder
, “
On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules
,”
IEEE J. Photovoltaics
4
,
915
923
(
2014
).
38.
Y.
Liu
,
A. A.
Heidari
,
X.
Ye
,
G.
Liang
,
H.
Chen
, and
C.
He
, “
Boosting slime mould algorithm for parameter identification of photovoltaic models
,”
Energy
234
,
121164
(
2021
).
39.
M. H.
Qais
,
H. M.
Hasanien
, and
S.
Alghuwainem
, “
Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values
,”
Energy Convers. Manage.
214
,
112904
(
2020
).
40.
O. S.
Elazab
,
H. M.
Hasanien
,
M. A.
Elgendy
, and
A. M.
Abdeen
, “
Parameters estimation of single- and multiple-diode photovoltaic model using whale optimisation algorithm
,”
IET Renewable Power Gener.
12
,
1755
1761
(
2018
).
41.
M.
Premkumar
,
T. S.
Babu
,
S.
Umashankar
, and
R.
Sowmya
, “
A new metaphor-less algorithms for the photovoltaic cell parameter estimation
,”
Optik
208
,
164559
(
2020
).
42.
M.
Abd Elaziz
and
D.
Oliva
, “
Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
,”
Energy Convers. Manage.
171
,
1843
1859
(
2018
).
43.
P.
Trojovský
and
M.
Dehghani
, “
A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
,”
Sci. Rep.
13
(
1
),
8775
(
2023
).
44.
D.
Delahaye
,
S.
Chaimatanan
, and
M.
Mongeau
, “
Simulated annealing: From basics to applications
,” in
International Series in Operations Research and Management Science
, edited by
M.
Gendreau
and
J.-Y.
Potvin
(
Springer International Publishing
,
Cham
,
2019
), pp.
1
35
.
45.
B.
Subudhi
and
R.
Pradhan
, “
Bacterial foraging optimization approach to parameter extraction of a photovoltaic module
,”
IEEE Trans. Sustainable Energy
9
(
1
),
381
389
(
2018
).
46.
S.
Saremi
,
S.
Mirjalili
, and
A.
Lewis
, “
Grasshopper optimisation algorithm: Theory and application
,”
Adv. Eng. Software
105
,
30
47
(
2017
).
47.
J. R.
Gahruei
and
Y.
Beheshti
, “
The electricity consumption prediction using hybrid red kite optimization algorithm with multi-layer perceptron neural network
,”
J. Intell. Proced. Electr. Technol.
15
(
60
),
1
22
(
2022
).
48.
E. I.
Batzelis
, “
Simple PV performance equations theoretically well founded on the single-diode model
,”
IEEE J. Photovoltaics
7
(
5
),
1400
1409
(
2017
).