A novel extension of the Lindley and Weibull distributions is proposed in this article by combining the Lindley distribution with the extended odd Weibull family, termed the extended odd Weibull–Lindley (EOWL) distribution. The statistical properties of the EOWL distribution are derived, including a linear representation for its probability density function, moments, quantiles, and moment generation functions. Three parameter estimation methods (maximum likelihood, maximum spacing product, and least squares estimations) are explored. Monte Carlo simulations are conducted to evaluate the effectiveness of the estimator methods. Finally, in order to illustrate the flexibility and validity of the proposed distribution, three real datasets are employed. The results show that the EOWL distribution demonstrates a superior fitting performance compared to other established distributions.

In various practical fields, such as medicine, engineering, and finance, it is essential to create models and analyze data related to the lifetime or longevity of objects or processes. Over the past two decades, researchers have introduced and investigated various probability distributions for the purpose of modeling data related to lifetime in various practical domains, including engineering, biological study, environmental sciences, economics, and medical sciences. Some of the original probability distributions have the drawback of having a monotonic hazard rate function; therefore, many of the generalized families have been introduced by several researchers to generate flexible and useful distributions that can capture non-monotonic hazard rate curves. Some of these families of distributions in this context include the exponentiated-G (E-G) family,1 beta-G (B-G) family,2 Marshall and Olkin-G (MO-G) family,3 log-logistic-G family,4 Kumaraswamy-G (K-G) family,5 gamma-G (G-G) family,6 exponentiated generalized class family,7 Weibull-G family,8 Lindley-H family,9 and alpha power transformed-G (APT-G) family.10 For more details, see Refs. 11 and 12.

The exponential (Exp.) distribution finds wide use in analyzing real-world data, mostly in fields such as reliability and survival analysis. In the field of lifetime analysis, it was the initial model for which significant statistical methods were systematically developed. A novel distribution known as the Lindley (L) distribution13 is suggested as an alternative to the Exp. and gamma (Ga) distributions. Subsequently, Ghitany et al.14 conducted an examination of its characteristics and demonstrated that the L distribution outperforms the Exp. and Ga distributions in modeling certain situations. The L distribution is usually used for data with a steadily increasing failure rate. Several authors introduced and suggested many extensions of the L distribution, for example power Lindley distribution,15 generalized Lindley distribution,16 beta-Lindley distribution,17 the Kumaraswamy–Lindley distribution,18 exponentiated generalized Lindley distribution,19 alpha-power transformed Lindley distribution,20 and alpha power transformed extended power Lindley distribution.21 

Numerous probability distributions have been developed to address the complexity of modeling natural phenomena, which often prove challenging to represent accurately using conventional distributions. Nevertheless, established probability distributions still fall short in accurately modeling certain aspects of natural phenomena data. This has necessitated the expansion and adaptation of generalized probability families of distributions. The introduction of new parameters into existing probability families of distributions has enhanced their suitability for representing data related to natural phenomena, resulting in an improved accuracy in describing the distribution’s tail shape, for example, extended generalized log-logistic-G family,22 Harris family of survival functions,23,24 extended wrapped Cauchy-G family,25 exponentiated-G (E-G) family,7 new exponentiated extended-G family,26 extended Cordeiro and de Castro-G (ECC-G) family,27 generalized odd log-logistic-G family,28 new generalized odd log-logistic-G family,29 new extended alpha power transformed (APT-G) family,30 and the odd log-logistic Lindley-G (OLLLi-G) family.31 Based on these families, some extended Lindley distributions were suggested, such as odd log-logistic Marshall–Olkin–Lindley distribution32 and new odd log-logistic Lindley (NOLL-L) distribution.33 

Recently, a new extended family of distributions called extended odd Weibull-G (EPW-G) family34 has been suggested. This family is flexible and useful for modeling different types of data with decreasing, increasing, bimodal, and unimodal shaped failure rates. Furthermore, it has been observed that particular models within this family outperform alternative models from other established families in terms of their fit. The cumulative distribution function (CDF) and probability density function (PDF) of the EOW-G family of distributions are defined as follows:
(1)
and
(2)
where x > 0, the shape parameters ω, ν > 0, and φ is the vector of parameters related to the baseline distribution.

Using this family, many authors proposed some distribution extensions, for example extended odd Weibull–Weibull (EOWW) distribution, extended odd Weibull–normal (EOWN) distribution,34 extended odd Weibull–Rayleigh (EOWR) distribution,35 extended odd Weibull–inverse Nadarajah–Haghighi (EOWINH) distribution,36 and extended odd Weibull–Pareto (EOWP) distribution.37 

Now, motivated by Refs. 34–37, we introduce the extended odd Weibull–Lindley (EOWL) distribution as an extension of the Lindley distribution by combining the EOW-G family with the Lindley distribution. Furthermore, the introduction of the new extension is motivated by its capacity and adaptability to model various datasets. Evidently, this extension demonstrates superior fitting capabilities when compared to alternative distributions.

The rest of this paper is organized as follows: the EOWL distribution is defined and its properties are derived in Sec. II. In Sec. III, three estimation methods are established, and a simulation study is applied to compare the performance of estimation methods. The applications of different data types are provided in Sec. IV to show the ability and efficiency of the EOWL distribution. Finally, findings and conclusions are provided in Sec. V.

The PDF and CDF of the L distribution are defined as follows:
(3)
and
(4)
where x > 0 and the scale parameter is γ > 0. By substituting (3) in (1), the CDF of the EOWL distribution is defined as follows:
(5)
and by substituting (3) and (4) into (2), the PDF of the EOWL distribution is obtained as follows:
(6)

Hence, we can say that the RV X follows the EOWL distribution, denoted by XEOWL(ν, ω, γ), if its PDF is defined by (6).

The survival function (SF) and the hazard rate function (HRF) of the EOWL distribution are defined as follows:
(7)
and
(8)

The behaviors of the PDF and HRF of the EOWL distribution for different values of parameters are shown in Fig. 1. In Fig. 1(a), we observe that the PDF can be decreasing, symmetric, and right-skewed shaped. Figure 1(b) highlights that the HRF can exhibit diverse shapes, including increasing, decreasing, inverse-J, and concave shapes.

FIG. 1.

Plots of the PDF and HRF of the EOWL distribution for different parameter values.

FIG. 1.

Plots of the PDF and HRF of the EOWL distribution for different parameter values.

Close modal
The quantile function Q(u) of the EOWL distribution is obtained by inverting the CDF in (5) as follows:
(9)

Numerical results for quartiles, skewness, and kurtosis of the EOWL distribution for different values of parameters γ, ω, and ν are presented in Table I.

TABLE I.

Quartiles, skewness, and kurtosis of the EOWL distribution for different values of parameters.

γωνQ1Q2Q3SK
0.25 0.5 0.25 1.204 4.289 9.556 0.261 1.132 
0.75 1.346 5.300 12.839 0.312 1.175 
2.5 1.997 10.520 27.676 0.336 1.176 
2.806 16.725 42.222 0.294 1.168 
1.5 0.25 3.685 5.315 7.006 0.018 1.209 
0.75 3.799 5.685 7.937 0.088 1.258 
2.5 4.240 7.282 12.383 0.253 1.369 
4.676 9.042 17.304 0.309 1.351 
0.75 0.5 0.25 0.249 1.131 2.816 0.313 1.136 
0.75 0.284 1.446 3.892 0.356 1.179 
2.5 0.455 3.131 8.807 0.359 1.172 
0.684 5.174 13.646 0.307 1.161 
1.5 0.25 0.946 1.451 1.990 0.032 1.200 
0.75 0.980 1.568 2.290 0.103 1.254 
2.5 1.115 2.078 3.742 0.267 1.373 
1.251 2.648 5.366 0.321 1.354 
2.5 0.5 0.25 0.047 0.246 0.688 0.381 1.195 
0.75 0.055 0.324 0.989 0.423 1.239 
2.5 0.090 0.775 2.418 0.412 1.202 
0.141 1.356 3.853 0.345 1.173 
1.5 0.25 0.201 0.325 0.465 0.059 1.195 
0.75 0.210 0.355 0.545 0.132 1.260 
2.5 0.242 0.488 0.946 0.301 1.401 
0.275 0.642 1.411 0.354 1.381 
γωνQ1Q2Q3SK
0.25 0.5 0.25 1.204 4.289 9.556 0.261 1.132 
0.75 1.346 5.300 12.839 0.312 1.175 
2.5 1.997 10.520 27.676 0.336 1.176 
2.806 16.725 42.222 0.294 1.168 
1.5 0.25 3.685 5.315 7.006 0.018 1.209 
0.75 3.799 5.685 7.937 0.088 1.258 
2.5 4.240 7.282 12.383 0.253 1.369 
4.676 9.042 17.304 0.309 1.351 
0.75 0.5 0.25 0.249 1.131 2.816 0.313 1.136 
0.75 0.284 1.446 3.892 0.356 1.179 
2.5 0.455 3.131 8.807 0.359 1.172 
0.684 5.174 13.646 0.307 1.161 
1.5 0.25 0.946 1.451 1.990 0.032 1.200 
0.75 0.980 1.568 2.290 0.103 1.254 
2.5 1.115 2.078 3.742 0.267 1.373 
1.251 2.648 5.366 0.321 1.354 
2.5 0.5 0.25 0.047 0.246 0.688 0.381 1.195 
0.75 0.055 0.324 0.989 0.423 1.239 
2.5 0.090 0.775 2.418 0.412 1.202 
0.141 1.356 3.853 0.345 1.173 
1.5 0.25 0.201 0.325 0.465 0.059 1.195 
0.75 0.210 0.355 0.545 0.132 1.260 
2.5 0.242 0.488 0.946 0.301 1.401 
0.275 0.642 1.411 0.354 1.381 
The EOW-G family, as demonstrated in Ref. 34, can be expressed as a mixture, characterized by the following density expansion:
(10)
where Ik,m=νmΓ(ωm+k)1νmk!m!Γ(ωm) and hωm+k(x)=(ωm+k)g(x)G(x)ωm+k1 is the PDF of the E-G family with the positive power ωm + k for a baseline G(x) of the required distribution. By substituting (3) and (4) into (10), the linear representation of the PDF for the EOWL distribution through series techniques is defined as follows:
(11)
Using the binomial expansion, the f(x) in (11) reduces to
(12)
where Ωp,q=k,m=0Ik,m(1)pωm+k1ppqγ2+q(ωm+k)(1+γ)1+q.
Now, based on (12), the rth moment of the RV X is given by
(13)
and the moment generating function (MGF) of the RV X is given by
(14)
In this section, we investigate the process of estimating the parameters for the EOWL distribution. We employ three estimation methods: maximum likelihood (ML), maximum product of spacing (MPS), and least squares (LS) estimators. To establish the different estimation approaches, we consider x1, x2, …, xn as sequential observations derived from the samples X1, X2, …, Xn. These samples are randomly drawn from the EOWL distribution with the parameters (γ, ω, ν). The log-likelihood function based on the PDF in (6) can be given as follows:
(15)
The MLEs γ̂MLE, ω̂MLE, and ν̂MLE of the EOWL parameters γ, ω, and ν can be calculated numerically by maximizing the (γ, ω, ν) in (15).
The LSEs γ̂LSE, ω̂LSE, and ν̂LSE of the EOWL parameters γ, ω, and ν can be calculated numerically by minimizing the following function for γ, ω, and ν:
(16)
where N=n+1in+1.
The MPSEs γ̂MPSE, ω̂MPSE, and ν̂MPSE of the EOWL parameters γ, ω, and ν can be calculated numerically by maximizing the following function in relation to γ, ω, and ν:
(17)
where Di(γ, ω, ν) = F(xi, γ, ω, ν) − F(xi−1, γ, ω, ν).

To facilitate method comparison, Monte Carlo simulations are conducted within this section. The estimations for the parameters of the EOWL lifetime distribution are computed using ML, MPS, and LS estimations in the R programming language. We utilize a dataset of 10 000 randomly generated samples from the EOWL distribution, where X follows the EOWL distribution with varying parameter values and sample sizes (20, 40, 80, 160, and 320). The quality of the estimations is assessed based on criteria such as mean squared error (MSE), root mean squared error (RMSE), and bias. The results of simulations are briefed in Tables IIV. The findings indicate that, with increasing sample size, each of MSE, RMSE, and bias decreases, and the most effective estimation method is MPSE followed by MLE.

TABLE II.

Mean, MSE, RMSE, and bias of the EOWL distribution for MLE, LSE, and MPSE when γ = 1.5, ω = 1.25, and ν = 0.5.

MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 1.465 0.084 0.290 0.035 1.630 0.152 0.390 0.130 1.416 0.083 0.287 0.084 
ω 1.809 0.628 0.792 0.559 1.589 0.479 0.692 0.339 1.656 0.407 0.638 0.406 
ν 1.267 1.281 1.132 0.767 0.789 0.982 0.991 0.289 1.442 1.571 1.254 0.942 
40 γ 1.565 0.146 0.382 0.065 1.475 0.081 0.285 0.025 1.470 0.063 0.251 0.030 
ω 1.327 0.202 0.449 0.077 1.521 0.657 0.811 0.271 1.323 0.139 0.372 0.073 
ν 0.531 0.372 0.610 0.031 0.874 1.352 1.163 0.374 0.690 0.335 0.579 0.190 
80 γ 1.584 0.137 0.370 0.084 1.516 0.038 0.194 0.016 1.510 0.042 0.205 0.010 
ω 1.274 0.094 0.306 0.024 1.329 0.115 0.340 0.079 1.287 0.076 0.276 0.037 
ν 0.489 0.161 0.401 0.011 0.616 0.249 0.499 0.116 0.601 0.146 0.382 0.101 
160 γ 1.513 0.014 0.117 0.013 1.530 0.027 0.164 0.030 1.485 0.012 0.109 0.015 
ω 1.267 0.043 0.206 0.017 1.259 0.085 0.292 0.009 1.277 0.039 0.198 0.027 
ν 0.513 0.074 0.273 0.013 0.511 0.188 0.433 0.011 0.579 0.077 0.277 0.079 
320 γ 1.514 0.006 0.080 0.014 1.501 0.010 0.102 0.001 1.495 0.006 0.075 0.005 
ω 1.242 0.015 0.122 0.008 1.276 0.031 0.175 0.026 1.252 0.014 0.118 0.002 
ν 0.472 0.028 0.167 0.028 0.525 0.071 0.266 0.025 0.514 0.027 0.164 0.014 
MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 1.465 0.084 0.290 0.035 1.630 0.152 0.390 0.130 1.416 0.083 0.287 0.084 
ω 1.809 0.628 0.792 0.559 1.589 0.479 0.692 0.339 1.656 0.407 0.638 0.406 
ν 1.267 1.281 1.132 0.767 0.789 0.982 0.991 0.289 1.442 1.571 1.254 0.942 
40 γ 1.565 0.146 0.382 0.065 1.475 0.081 0.285 0.025 1.470 0.063 0.251 0.030 
ω 1.327 0.202 0.449 0.077 1.521 0.657 0.811 0.271 1.323 0.139 0.372 0.073 
ν 0.531 0.372 0.610 0.031 0.874 1.352 1.163 0.374 0.690 0.335 0.579 0.190 
80 γ 1.584 0.137 0.370 0.084 1.516 0.038 0.194 0.016 1.510 0.042 0.205 0.010 
ω 1.274 0.094 0.306 0.024 1.329 0.115 0.340 0.079 1.287 0.076 0.276 0.037 
ν 0.489 0.161 0.401 0.011 0.616 0.249 0.499 0.116 0.601 0.146 0.382 0.101 
160 γ 1.513 0.014 0.117 0.013 1.530 0.027 0.164 0.030 1.485 0.012 0.109 0.015 
ω 1.267 0.043 0.206 0.017 1.259 0.085 0.292 0.009 1.277 0.039 0.198 0.027 
ν 0.513 0.074 0.273 0.013 0.511 0.188 0.433 0.011 0.579 0.077 0.277 0.079 
320 γ 1.514 0.006 0.080 0.014 1.501 0.010 0.102 0.001 1.495 0.006 0.075 0.005 
ω 1.242 0.015 0.122 0.008 1.276 0.031 0.175 0.026 1.252 0.014 0.118 0.002 
ν 0.472 0.028 0.167 0.028 0.525 0.071 0.266 0.025 0.514 0.027 0.164 0.014 
TABLE III.

Mean, MSE, RMSE, and bias of the EOWL distribution for MLE, LSE, and MPSE when γ = 1.25, ω = 2, and ν = 1.5.

MLEsLSEsMPSEs
SampleNameMeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 1.308 0.094 0.307 0.058 1.286 0.073 0.270 0.036 1.276 0.057 0.238 0.026 
ω 2.517 6.610 2.571 0.517 2.494 4.967 2.229 0.494 2.316 7.143 2.673 0.316 
ν 2.093 13.254 3.641 0.593 2.174 9.232 3.038 0.674 2.103 17.379 4.169 0.603 
40 γ 1.261 0.031 0.176 0.011 1.245 0.027 0.165 0.005 1.244 0.021 0.147 0.006 
ω 2.145 0.427 0.654 0.145 2.174 0.584 0.764 0.174 2.018 0.274 0.523 0.018 
ν 1.628 0.699 0.836 0.128 1.759 1.042 1.021 0.259 1.661 0.546 0.739 0.161 
80 γ 1.255 0.019 0.138 0.005 1.255 0.027 0.163 0.005 1.245 0.016 0.127 0.005 
ω 2.189 0.420 0.648 0.189 2.229 0.673 0.821 0.229 2.098 0.294 0.542 0.098 
ν 1.702 0.666 0.816 0.202 1.800 1.213 1.101 0.300 1.723 0.561 0.749 0.223 
160 γ 1.249 0.009 0.093 0.001 1.252 0.012 0.107 0.002 1.243 0.008 0.088 0.007 
ω 2.077 0.137 0.370 0.077 2.092 0.266 0.516 0.092 2.039 0.115 0.339 0.039 
ν 1.584 0.234 0.484 0.084 1.615 0.457 0.676 0.115 1.612 0.220 0.469 0.112 
320 γ 1.249 0.004 0.060 0.001 1.251 0.005 0.073 0.001 1.245 0.003 0.058 0.005 
ω 2.013 0.061 0.247 0.013 2.006 0.088 0.296 0.006 1.996 0.055 0.235 0.004 
ν 1.493 0.093 0.304 0.007 1.498 0.158 0.398 0.002 1.512 0.086 0.293 0.012 
MLEsLSEsMPSEs
SampleNameMeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 1.308 0.094 0.307 0.058 1.286 0.073 0.270 0.036 1.276 0.057 0.238 0.026 
ω 2.517 6.610 2.571 0.517 2.494 4.967 2.229 0.494 2.316 7.143 2.673 0.316 
ν 2.093 13.254 3.641 0.593 2.174 9.232 3.038 0.674 2.103 17.379 4.169 0.603 
40 γ 1.261 0.031 0.176 0.011 1.245 0.027 0.165 0.005 1.244 0.021 0.147 0.006 
ω 2.145 0.427 0.654 0.145 2.174 0.584 0.764 0.174 2.018 0.274 0.523 0.018 
ν 1.628 0.699 0.836 0.128 1.759 1.042 1.021 0.259 1.661 0.546 0.739 0.161 
80 γ 1.255 0.019 0.138 0.005 1.255 0.027 0.163 0.005 1.245 0.016 0.127 0.005 
ω 2.189 0.420 0.648 0.189 2.229 0.673 0.821 0.229 2.098 0.294 0.542 0.098 
ν 1.702 0.666 0.816 0.202 1.800 1.213 1.101 0.300 1.723 0.561 0.749 0.223 
160 γ 1.249 0.009 0.093 0.001 1.252 0.012 0.107 0.002 1.243 0.008 0.088 0.007 
ω 2.077 0.137 0.370 0.077 2.092 0.266 0.516 0.092 2.039 0.115 0.339 0.039 
ν 1.584 0.234 0.484 0.084 1.615 0.457 0.676 0.115 1.612 0.220 0.469 0.112 
320 γ 1.249 0.004 0.060 0.001 1.251 0.005 0.073 0.001 1.245 0.003 0.058 0.005 
ω 2.013 0.061 0.247 0.013 2.006 0.088 0.296 0.006 1.996 0.055 0.235 0.004 
ν 1.493 0.093 0.304 0.007 1.498 0.158 0.398 0.002 1.512 0.086 0.293 0.012 
TABLE IV.

Mean, MSE, RMSE, and bias of the EOWL distribution for MLE, LSE, and MPSE when γ = 1.5, ω = 2, and ν = 2.5.

MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 2.167 11.522 3.394 0.667 1.543 0.298 0.546 0.043 1.555 0.102 0.319 0.055 
ω 2.872 4.799 2.191 0.872 3.380 11.574 3.402 1.380 2.251 1.785 1.336 0.251 
ν 3.311 6.549 2.559 0.811 4.381 22.183 4.710 1.881 2.925 3.089 1.758 0.425 
40 γ 1.730 2.593 1.610 0.230 1.570 0.209 0.458 0.070 1.684 1.797 1.341 0.184 
ω 2.306 1.861 1.364 0.306 2.435 2.548 1.596 0.435 1.975 0.684 0.827 0.025 
ν 2.864 5.508 2.347 0.364 3.175 7.919 2.814 0.675 2.589 2.405 1.551 0.089 
80 γ 1.516 0.071 0.266 0.016 1.535 0.089 0.298 0.035 1.512 0.058 0.241 0.012 
ω 2.304 0.868 0.932 0.304 2.342 2.292 1.514 0.342 2.151 0.566 0.752 0.151 
ν 2.900 2.212 1.487 0.400 3.007 6.330 2.516 0.507 2.822 1.689 1.300 0.322 
160 γ 1.521 0.024 0.153 0.021 1.522 0.030 0.173 0.022 1.521 0.021 0.146 0.021 
ω 2.081 0.225 0.475 0.081 2.110 0.378 0.615 0.110 2.010 0.181 0.425 0.010 
ν 2.526 0.581 0.763 0.026 2.597 1.041 1.020 0.097 2.502 0.502 0.709 0.002 
320 γ 1.498 0.008 0.092 0.002 1.495 0.011 0.103 0.005 1.499 0.008 0.088 0.001 
ω 2.038 0.079 0.282 0.038 2.064 0.129 0.359 0.064 2.000 0.070 0.264 0.000 
ν 2.532 0.240 0.489 0.032 2.587 0.438 0.662 0.087 2.520 0.219 0.468 0.020 
MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 2.167 11.522 3.394 0.667 1.543 0.298 0.546 0.043 1.555 0.102 0.319 0.055 
ω 2.872 4.799 2.191 0.872 3.380 11.574 3.402 1.380 2.251 1.785 1.336 0.251 
ν 3.311 6.549 2.559 0.811 4.381 22.183 4.710 1.881 2.925 3.089 1.758 0.425 
40 γ 1.730 2.593 1.610 0.230 1.570 0.209 0.458 0.070 1.684 1.797 1.341 0.184 
ω 2.306 1.861 1.364 0.306 2.435 2.548 1.596 0.435 1.975 0.684 0.827 0.025 
ν 2.864 5.508 2.347 0.364 3.175 7.919 2.814 0.675 2.589 2.405 1.551 0.089 
80 γ 1.516 0.071 0.266 0.016 1.535 0.089 0.298 0.035 1.512 0.058 0.241 0.012 
ω 2.304 0.868 0.932 0.304 2.342 2.292 1.514 0.342 2.151 0.566 0.752 0.151 
ν 2.900 2.212 1.487 0.400 3.007 6.330 2.516 0.507 2.822 1.689 1.300 0.322 
160 γ 1.521 0.024 0.153 0.021 1.522 0.030 0.173 0.022 1.521 0.021 0.146 0.021 
ω 2.081 0.225 0.475 0.081 2.110 0.378 0.615 0.110 2.010 0.181 0.425 0.010 
ν 2.526 0.581 0.763 0.026 2.597 1.041 1.020 0.097 2.502 0.502 0.709 0.002 
320 γ 1.498 0.008 0.092 0.002 1.495 0.011 0.103 0.005 1.499 0.008 0.088 0.001 
ω 2.038 0.079 0.282 0.038 2.064 0.129 0.359 0.064 2.000 0.070 0.264 0.000 
ν 2.532 0.240 0.489 0.032 2.587 0.438 0.662 0.087 2.520 0.219 0.468 0.020 
TABLE V.

Mean, MSE, RMSE, and bias of the EOWL distribution for MLE, LSE, and MPSE when γ = 0.5, ω = 1.5, and ν = 2.5

MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 0.626 0.536 0.732 0.126 0.523 0.051 0.226 0.023 0.560 0.302 0.549 0.060 
ω 1.977 2.523 1.588 0.477 2.001 1.770 1.330 0.501 1.714 0.939 0.969 0.214 
ν 3.572 15.559 3.945 1.072 3.597 8.256 2.873 1.097 3.240 6.857 2.619 0.740 
40 γ 0.524 0.023 0.151 0.024 0.533 0.024 0.156 0.033 0.512 0.014 0.119 0.012 
ω 1.893 3.418 1.849 0.393 1.789 1.710 1.308 0.289 1.655 1.106 1.052 0.155 
ν 3.266 15.494 3.936 0.766 3.077 7.892 2.809 0.577 2.974 5.870 2.423 0.474 
80 γ 0.517 0.014 0.120 0.017 0.517 0.016 0.127 0.017 0.509 0.010 0.098 0.009 
ω 1.752 0.905 0.951 0.252 1.822 1.359 1.166 0.322 1.616 0.509 0.713 0.116 
ν 3.111 5.617 2.370 0.611 3.264 6.862 2.620 0.764 2.969 3.485 1.867 0.469 
160 γ 0.507 0.004 0.063 0.007 0.516 0.006 0.075 0.016 0.505 0.003 0.058 0.005 
ω 1.600 0.216 0.465 0.100 1.549 0.240 0.490 0.049 1.551 0.167 0.408 0.051 
ν 2.685 1.074 1.036 0.185 2.615 1.343 1.159 0.115 2.670 0.899 0.948 0.170 
320 γ 0.507 0.002 0.046 0.007 0.508 0.003 0.058 0.008 0.505 0.002 0.043 0.005 
ω 1.510 0.082 0.287 0.010 1.537 0.151 0.389 0.037 1.487 0.072 0.269 0.013 
ν 2.513 0.390 0.624 0.013 2.584 0.856 0.925 0.084 2.513 0.348 0.590 0.013 
MLEsLSEsMPSEs
NPar.MeanMSERMSEBiasMeanMSERMSEBiasMeanMSERMSEBias
20 γ 0.626 0.536 0.732 0.126 0.523 0.051 0.226 0.023 0.560 0.302 0.549 0.060 
ω 1.977 2.523 1.588 0.477 2.001 1.770 1.330 0.501 1.714 0.939 0.969 0.214 
ν 3.572 15.559 3.945 1.072 3.597 8.256 2.873 1.097 3.240 6.857 2.619 0.740 
40 γ 0.524 0.023 0.151 0.024 0.533 0.024 0.156 0.033 0.512 0.014 0.119 0.012 
ω 1.893 3.418 1.849 0.393 1.789 1.710 1.308 0.289 1.655 1.106 1.052 0.155 
ν 3.266 15.494 3.936 0.766 3.077 7.892 2.809 0.577 2.974 5.870 2.423 0.474 
80 γ 0.517 0.014 0.120 0.017 0.517 0.016 0.127 0.017 0.509 0.010 0.098 0.009 
ω 1.752 0.905 0.951 0.252 1.822 1.359 1.166 0.322 1.616 0.509 0.713 0.116 
ν 3.111 5.617 2.370 0.611 3.264 6.862 2.620 0.764 2.969 3.485 1.867 0.469 
160 γ 0.507 0.004 0.063 0.007 0.516 0.006 0.075 0.016 0.505 0.003 0.058 0.005 
ω 1.600 0.216 0.465 0.100 1.549 0.240 0.490 0.049 1.551 0.167 0.408 0.051 
ν 2.685 1.074 1.036 0.185 2.615 1.343 1.159 0.115 2.670 0.899 0.948 0.170 
320 γ 0.507 0.002 0.046 0.007 0.508 0.003 0.058 0.008 0.505 0.002 0.043 0.005 
ω 1.510 0.082 0.287 0.010 1.537 0.151 0.389 0.037 1.487 0.072 0.269 0.013 
ν 2.513 0.390 0.624 0.013 2.584 0.856 0.925 0.084 2.513 0.348 0.590 0.013 

In this section, we present some real-life datasets from different fields, to evaluate the fitness of applying the EOWL distribution. We conduct a comparative analysis between the EOWL distribution and other competitive models, specifically the EOWR and EOWW distributions. The essential statistical metrics, such as negative log-likelihood (−), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan–Quinn information criterion (HQIC), and the Anderson–Darling (A*), Cramer–von Mises (W*), and Kolmogorov–Smirnov (KS) statistics with their P-value, were applied to verify which distribution better fits the real-life datasets.

The data considered pertain to the endurance of Kevlar 373/epoxy composites under a constant pressure at 90% of their stress capacity until failure occurs. This was reported by Ref. 38 and studied by Ref. 39. The descriptive statistics for this dataset are n = 76, min = 0.0251, Q1 = 0.9048, median = 1.7362, mean = 1.9595, Q3 = 2.2959, max = 9.0960, skewness = 1.9402, and kurtosis = 4.9466. Based on these results, these data are right-skewed and leptokurtic. Tables VI and VII give the maximum likelihood estimates (MLEs) with standard errors (SEs) and the goodness-of-fit (GOF) metrics, respectively. The fitted PDF, CDF, and P–P plot of the EOWL and other distributions are displayed in Figs. 2 and 3.

TABLE VI.

MLEs and SEs of parameters for dataset 1.

Modelsγωνλ
EOWL 0.796 1.367 1.308  
(0.092) (0.216) (0.499) 
EOWR 0.285 0.797 2.052 
(0.094) (0.122) (0.863) 
EOWW 0.598 2.274 0.655 3.127 
(0.665) (2.220) (0.580) (2.496) 
Modelsγωνλ
EOWL 0.796 1.367 1.308  
(0.092) (0.216) (0.499) 
EOWR 0.285 0.797 2.052 
(0.094) (0.122) (0.863) 
EOWW 0.598 2.274 0.655 3.127 
(0.665) (2.220) (0.580) (2.496) 
TABLE VII.

Metrics of GOF for dataset 1.

ModelsAICBICCAICHQICA*W*KSP-value
EOWL 121.1424 248.2849 255.2771 248.6182 251.0793 0.519 97 0.088 494 0.080 832 0.727 663 
EOWR 127.0837 260.1674 267.1596 260.5008 262.9618 1.361 083 0.238 765 0.177 019 0.014 869 
EOWW 121.0051 250.0102 259.3331 250.5735 253.736 0.469 616 0.079 218 0.081 43 0.664 255 
ModelsAICBICCAICHQICA*W*KSP-value
EOWL 121.1424 248.2849 255.2771 248.6182 251.0793 0.519 97 0.088 494 0.080 832 0.727 663 
EOWR 127.0837 260.1674 267.1596 260.5008 262.9618 1.361 083 0.238 765 0.177 019 0.014 869 
EOWW 121.0051 250.0102 259.3331 250.5735 253.736 0.469 616 0.079 218 0.081 43 0.664 255 
FIG. 2.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for dataset 1.

FIG. 2.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for dataset 1.

Close modal
FIG. 3.

P–P plots of the EOWL and other competitive distributions for dataset 1.

FIG. 3.

P–P plots of the EOWL and other competitive distributions for dataset 1.

Close modal

Based on the findings in Table VII, it is obvious that the EOWL distribution demonstrates a superior fitting performance compared to alternative models. In addition, Fig. 2(a) provides additional insights by presenting a histogram of the data alongside the fitted PDFs for all distributions. This graphical representation underscores the EOWL distribution’s exceptional suitability for accommodating skewed data. Furthermore, the conclusions drawn from the results in Table VII are further substantiated by Figs. 2 and 3.

The second dataset consists of recorded precipitation levels in Minneapolis–St. Paul for the month of March, covering the period of 30 years. It is reported by Ref. 40. The descriptive statistics for this dataset are n = 30, min = 0.320, Q1 = 0.915, median = 1.470, mean = 1.675, Q3 = 2.087, max = 4.750, skewness = 1.033, and kurtosis = 0.931. Based on these results, the shape of dataset 2 is right-skewed and platykurtic. Tables VIII and IX give the MLEs with SEs and the GOF metrics, respectively. The fitted PDF, CDF, and P–P plots of the EOWL and other distributions are shown in Figs. 4 and 5.

TABLE VIII.

MLEs and SEs for the precipitation level data.

Modelsγωνλ
EOWL 0.834 1.824 1.230  
(0.147) (0.562) (1.009) 
EOWR 0.565 1.402 3.810 
(0.611) (0.826) (6.151) 
EOWW 1.872 1.406 3.019 1.427 
(0.729) (0.678) (5.637) (0.846) 
Modelsγωνλ
EOWL 0.834 1.824 1.230  
(0.147) (0.562) (1.009) 
EOWR 0.565 1.402 3.810 
(0.611) (0.826) (6.151) 
EOWW 1.872 1.406 3.019 1.427 
(0.729) (0.678) (5.637) (0.846) 
TABLE IX.

Measures of GOF for the precipitation level data.

ModelsAICBICCAICHQICA*W*KsP-value
EOWL 38.3841 82.7682 86.9718 83.6913 84.1130 0.1177 0.0158 0.0623 0.9998 
EOWR 38.1620 82.3241 86.5277 83.2472 83.6688 0.1246 0.0170 0.0722 0.9976 
EOWW 38.1431 84.2861 89.8909 85.8861 86.0792 0.1171 0.0161 0.0726 0.9974 
ModelsAICBICCAICHQICA*W*KsP-value
EOWL 38.3841 82.7682 86.9718 83.6913 84.1130 0.1177 0.0158 0.0623 0.9998 
EOWR 38.1620 82.3241 86.5277 83.2472 83.6688 0.1246 0.0170 0.0722 0.9976 
EOWW 38.1431 84.2861 89.8909 85.8861 86.0792 0.1171 0.0161 0.0726 0.9974 
FIG. 4.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for the precipitation level data.

FIG. 4.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for the precipitation level data.

Close modal
FIG. 5.

P–P plots of the EOWL and other competitive distributions for the precipitation level data.

FIG. 5.

P–P plots of the EOWL and other competitive distributions for the precipitation level data.

Close modal

Based on the findings in Table IX, it is obvious that the EOWL distribution demonstrates a superior fitting performance compared to alternative models. In addition, Fig. 4(a) provides additional insights by presenting a histogram of the data alongside the fitted PDFs for all distributions. This graphical representation underscores the EOWL distribution’s exceptional suitability for accommodating skewed data. Furthermore, the conclusions drawn from the results in Table IX are further substantiated by Figs. 4 and 5.

Total Factor Productivity (TFP) is a metric used to assess the agricultural output generated from the collective utilization of resources such as land, labor, capital, and materials in the process of farm production. An increase in total factor productivity (TFP) is indicated when the rate of growth in overall output surpasses that of the total resources expended. Alyami et al.41 studied the TFP growth data for 37 African countries from 2001 to 2010. The descriptive statistics are n = 37, min = 4.566, Q1 = 6.571, median = 10.966, mean = 10.649, Q3 = 13.805, max = 17.830, skewness = 0.113, and kurtosis = −1.307. Therefore, the TFP data are right-skewed and platykurtic. Tables X and XI give the MLEs with SEs and the GOF measures, respectively. The fitted PDF, CDF, and P–P plots of the EOWL and other distributions are shown in Figs. 6 and 7.

TABLE X.

MLEs and SEs of parameters for the TFP growth data.

Modelsγωνλ
EOWL 0.807 1.209 0.825  
(0.167) (0.310) (0.736) 
EOWR 0.490 0.808 2.450 
(0.489) (0.265) (3.190) 
EOWW 0.159 6.501 0.040 18.354 
(0.119) (4.619) (0.404) (32.639) 
Modelsγωνλ
EOWL 0.807 1.209 0.825  
(0.167) (0.310) (0.736) 
EOWR 0.490 0.808 2.450 
(0.489) (0.265) (3.190) 
EOWW 0.159 6.501 0.040 18.354 
(0.119) (4.619) (0.404) (32.639) 
TABLE XI.

Measures of GOF for the TFP growth data.

ModelsAICBICCAICHQICA*W*KsP-value
EOWL 53.6083 113.2167 118.0494 113.9440 114.9205 0.1751 0.0278 0.0800 0.9719 
EOWR 53.7495 113.4990 118.3318 114.2263 115.2028 0.2528 0.0424 0.0981 0.8687 
EOWW 53.5560 115.1120 121.5556 116.3620 117.3837 0.1821 0.0293 0.0813 0.9674 
ModelsAICBICCAICHQICA*W*KsP-value
EOWL 53.6083 113.2167 118.0494 113.9440 114.9205 0.1751 0.0278 0.0800 0.9719 
EOWR 53.7495 113.4990 118.3318 114.2263 115.2028 0.2528 0.0424 0.0981 0.8687 
EOWW 53.5560 115.1120 121.5556 116.3620 117.3837 0.1821 0.0293 0.0813 0.9674 
FIG. 6.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for the TFP growth data.

FIG. 6.

Fitting plots of the PDF and CDF of the EOWL distribution and other competitive distributions for the TFP growth data.

Close modal
FIG. 7.

P–P plots of the EOWL and other competitive distributions for the TFP growth data.

FIG. 7.

P–P plots of the EOWL and other competitive distributions for the TFP growth data.

Close modal

Based on the findings in Table XI, it is obvious that the EOWL distribution demonstrates a superior fitting performance compared to alternative models. In addition, Fig. 6(a) provides additional insights by presenting a histogram of the data alongside the fitted PDFs for all distributions. This graphical representation underscores the EOWL distribution’s exceptional suitability for accommodating skewed data. Furthermore, the conclusions drawn from the results in Table XI are further substantiated by Figs. 6 and 7.

In this research, a novel extension of the Lindley and Weibull distributions was proposed, which is called the extended odd Weibull–Lindley (EOWL) distribution. The statistical properties of the EOWL distribution were derived, and the linear representation of its PDF was obtained. The linear representation helps to derive functions for moments, quantiles, and moment generation. Three methods for estimating the parameters of the EOWL distribution were studied, including MLE, MPSE, and LSE. To evaluate the performance of these estimation methods, a thorough comparative analysis was conducted using simulation techniques with the R package. To further validate the findings, three real-world datasets were applied and examined. The results demonstrated that the EOWL distribution provided a better fit than competing distributions.

We extend our sincere gratitude to the reviewers and editor for their invaluable contributions to this work. Their insightful comments and constructive feedback have greatly enhanced the quality and clarity of our manuscript. Their dedication and expertise have been instrumental in shaping the final outcome of this research. We deeply appreciate their time and effort invested in evaluating our work and providing valuable guidance throughout the review process.

The authors have no conflicts to disclose.

Fatehi Yahya Eissa: Conceptualization (equal); Methodology (equal); Software (equal); Writing – original draft (equal). Chhaya Dhanraj Sonar: Writing – review & editing (equal).

The data that support the findings of this study are available within the article.

1.
G. S.
Mudholkar
and
D. K.
Srivastava
, “
Exponentiated Weibull family for analyzing bathtub failure-rate data
,”
IEEE Trans. Reliab.
42
,
299
302
(
1993
).
2.
N.
Eugene
,
C.
Lee
, and
F.
Famoye
, “
Beta-normal distribution and its applications
,”
Commun. Stat. - Theory Methods
31
,
497
512
(
2002
).
3.
A. W.
Marshall
and
I.
Olkin
, “
A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families
,”
Biometrika
84
,
641
652
(
1997
).
4.
J.
Gleaton
and
J.
Lynch
, “
Properties of generalized log-logistic families of lifetime distributions
,”
J. Probab. Stat. Sci.
4
,
51
64
(
2006
).
5.
M.
Jones
, “
Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages
,”
Stat. Methodol.
6
,
70
81
(
2009
).
6.
K.
Zografos
and
N.
Balakrishnan
, “
On families of beta- and generalized gamma-generated distributions and associated inference
,”
Stat. Methodol.
6
,
344
362
(
2009
).
7.
G. M.
Cordeiro
,
E. M.
Ortega
, and
D. C. C. d.
Cunha
, “
The exponentiated generalized class of distributions
,”
J. Data Sci.
11
,
1
27
(
2013
).
8.
M.
Bourguignon
,
R. B.
Silva
, and
G. M.
Cordeiro
, “
The Weibull-g family of probability distributions
,”
J. Data Sci.
12
,
53
68
(
2014
).
9.
S. H.
Alkarni
et al, “
A class of Lindley and Weibull distributions
,”
Open J. Stat.
6
,
685
(
2016
).
10.
A.
Mahdavi
and
D.
Kundu
, “
A new method for generating distributions with an application to exponential distribution
,”
Commun. Stat. - Theory Methods.
46
,
6543
6557
(
2017
).
11.
L.
Handique
,
M. A. A.
Shah
,
M.
Mohsin
, and
F.
Jamal
, “
Properties and applications of a new member of the T-X family of distributions
,”
Thailand Stat.
19
,
248
260
(
2021
).
12.
A.
Khadim
,
A.
Saghir
,
T.
Hussain
, and
M.
Shakil
, “
Some new developments and review on T-X family of distributions
,”
J. Stat. Appl.
11
,
739
757
(
2022
).
13.
D. V.
Lindley
, “
Fiducial distributions and Bayes’ theorem
,”
J. R. Stat. Soc.: Ser. B
20
,
102
107
(
1958
).
14.
M. E.
Ghitany
,
B.
Atieh
, and
S.
Nadarajah
, “
Lindley distribution and its application
,”
Math. Comput. Simul.
78
,
493
506
(
2008
).
15.
M.
Ghitany
,
D. K.
Al-Mutairi
,
N.
Balakrishnan
, and
L.
Al-Enezi
, “
Power Lindley distribution and associated inference
,”
Comput. Stat. Data Anal.
64
,
20
33
(
2013
).
16.
S.
Nadarajah
,
H. S.
Bakouch
, and
R.
Tahmasbi
, “
A generalized Lindley distribution
,”
Sankhya B
73
,
331
359
(
2011
).
17.
F.
Merovci
and
V. K.
Sharma
, “
The beta-Lindley distribution: Properties and applications
,”
J. Appl. Math.
2014
,
198951
.
18.
F.
Merovci
and
V. K.
Sharma
, “
The Kumaraswamy-Lindley distribution: Properties and applications
,” Researchgate (
2014
); available at https://www.researchgate.net/publication/267569425_THE_KUMARASWAMY_LINDLEY_DISTRIBUTION_PROPERTIES_AND_APPLICATIONS.
19.
J.
Rodrigues
,
A.
Percontini
, and
G.
Hamedani
, “
The exponentiated generalized Lindley distribution
,”
Asian Res. J. Math.
5
,
1
14
(
2017
).
20.
S.
Dey
,
I.
Ghosh
, and
D.
Kumar
, “
Alpha-power transformed Lindley distribution: Properties and associated inference with application to earthquake data
,”
Ann. Data Sci.
6
,
623
650
(
2019
).
21.
F. Y.
Eissa
and
C. D.
Sonar
, “
Alpha power transformed extended power Lindley distribution
,”
J. Stat. Theory Appl.
22
,
1
18
(
2022
).
22.
J. U.
Gleaton
and
J. D.
Lynch
, “
Extended generalized log-logistic families of lifetime distributions with an application
,”
J. Probab. Stat. Sci.
8
,
1
17
(
2010
).
23.
E.-E. A.
Aly
and
L.
Benkherouf
, “
A new family of distributions based on probability generating functions
,”
Sankhya B
73
,
70
80
(
2011
).
24.
A.
Batsidis
and
A. J.
Lemonte
, “
On the Harris extended family of distributions
,”
Statistics
49
,
1400
1421
(
2015
).
25.
S.
Kato
and
M.
Jones
, “
An extended family of circular distributions related to wrapped Cauchy distributions via Brownian motion
,”
Bernoulli
19
,
157
171
(
2013
).
26.
M.
Elgarhy
,
M.
Haq
, and
G.
Ozel
, “
A new exponentiated extended family of distributions with applications
,”
Gazi Univ. J. Sci.
30
,
101
115
(
2017
).
27.
G. M.
Cordeiro
,
M.
Alizadeh
,
R. B.
Silva
, and
T. G.
Ramires
, “
A new wider family of continuous models: The extended Cordeiro and de Castro family
,”
Hacettepe J. Math. Stat.
47
,
25
(
2016
).
28.
G. M.
Cordeiro
,
M.
Alizadeh
,
G.
Ozel
,
B.
Hosseini
,
E. M. M.
Ortega
, and
E.
Altun
, “
The generalized odd log-logistic family of distributions: Properties, regression models and applications
,”
J. Stat. Comput. Simul.
87
,
908
932
(
2017
).
29.
H.
Haghbin
,
G.
Ozel
,
M.
Alizadeh
, and
G.
Hamedani
, “
A new generalized odd log-logistic family of distributions
,”
Commun. Stat. - Theory Methods
46
,
9897
9920
(
2017
).
30.
Z.
Ahmad
,
M.
Elgarhy
, and
N.
Abbas
, “
A new extended alpha power transformed family of distributions: Properties and applications
,”
J. Stat. Modell.: Theory Appl.
1
,
13
27
(
2020
).
31.
M.
Alizadeh
,
A. Z.
Afify
,
M. S.
Eliwa
, and
S.
Ali
, “
The odd log-logistic Lindley-G family of distributions: Properties, Bayesian and non-Bayesian estimation with applications
,”
Comput. Stat.
35
,
281
308
(
2020
).
32.
M.
Alizadeh
,
G.
Özel
,
E.
Altun
,
M.
Abdi
, and
G.
Hamedani
, “
The odd log-logistic Marshall-Olkin Lindley model for lifetime data
,”
J. Stat. Theory Appl.
16
,
382
400
(
2017
).
33.
M.
Alizadeh
,
E.
Altun
,
G.
Ozel
,
M.
Afshari
, and
A.
Eftekharian
, “
A new odd log-logistic Lindley distribution with properties and applications
,”
Sankhya A
81
,
323
346
(
2019
).
34.
M.
Alizadeh
,
E.
Altun
,
A. Z.
Afify
, and
G.
Ozel
, “
The extended odd Weibull-G family: Properties and applications
,”
Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat.
68
,
161
186
(
2018
).
35.
H. M.
Almongy
,
E. M.
Almetwally
,
H. M.
Aljohani
,
A. S.
Alghamdi
, and
E.
Hafez
, “
A new extended Rayleigh distribution with applications of COVID-19 data
,”
Results Phys.
23
,
104012
(
2021
).
36.
E. M.
Almetwally
, “
Extended odd Weibull inverse Nadarajah-Haghighi distribution with application on COVID-19 in Saudi Arabia
,”
Math. Sci. Lett.
10
,
85
99
(
2021
).
37.
E.
Almetwally
,
H. H.
Ahmad
, and
H.
Almongy
, “
Extended odd Weibull Pareto distribution, estimation and applications
,”
J. Stat. Appl. Probab.
11
,
795
809
(
2022
).
38.
D.
Andrews
and
A.
Herzberg
, “
Stress-rupture life of Kevlar 49/epoxy spherical pressure vessels
,” in
Data: A Collection of Problems from Many Fields for the Student and Research Worker
(
Springer-Verlag
,
1985
), pp.
181
186
.
39.
E. Q.
Chinedu
,
Q. C.
Chukwudum
,
N.
Alsadat
,
O. J.
Obulezi
,
E. M.
Almetwally
, and
A. H.
Tolba
, “
New lifetime distribution with applications to single acceptance sampling plan and scenarios of increasing hazard rates
,”
Symmetry
15
,
1881
(
2023
).
40.
D.
Hinkley
, “
On quick choice of power transformation
,”
Appl. Stat.
26
,
67
69
(
1977
).
41.
S. A.
Alyami
,
I.
Elbatal
,
N.
Alotaibi
,
E. M.
Almetwally
, and
M.
Elgarhy
, “
Modeling to factor productivity of the United Kingdom food chain: Using a new lifetime-generated family of distributions
,”
Sustainability
14
,
8942
(
2022
).