This paper investigates statistical inferences for product lifetimes following the inverted modified Lindley distribution, utilizing progressive Type-II censored data. The estimation of model parameters employs the maximum likelihood method, complemented by the construction of approximate confidence intervals. Bayesian estimates are also explored, incorporating squared error and linear exponential loss functions with noninformative priors. To approximate Bayes estimates, the proposal presents Gibbs sampling based on the MCMC algorithm. This results in the generation of the greatest posterior density credible intervals for the parameters. A real data analysis is conducted to validate the accuracy of all the models and methods discussed. Finally, computational studies using Monte Carlo simulations are presented to compare the suggested estimators.

Experiments frequently incorporate censoring schemes that conclude testing before all units fail due to the unavailability of information or data. In essence, censoring implies that only a partial record of the exact failure times of observed units is available in studies. Two common censoring systems are Type-I censoring, in which the experiment ends after a certain number of failures, and Type-II censoring, in which the test ends after a predetermined period. However, these conventional censoring schemes may occasionally extend in duration due to the product’s characteristic of high reliability and a long lifetime.

Hence, to identify a more effective approach for gathering failure information in lifetime studies, numerous alternative censoring schemes have been proposed, with the progressive Type-II censoring scheme (Prog-II CS) emerging as the most widely employed in practical applications. The following is an outline of the detailed events in this scheme: Assume put n independent, identical components through a life test where the censoring scheme R = (R1, R2, …, Rm) has been identified, and only m(≤n) failures are observed.1 

Upon the occurrence of the initial failure time, indicated as x1:m:n, R1 survival components are randomly removed from the test. Subsequently, when the second failure time, x2:m:n, occurs, R2 survival components are also randomly withdrawn. This sequence continues until the mth failure, xm:m:n, unfolds. At this juncture, the remaining Rm survival components are withdrawn, leading to the conclusion of the experiment. Therefore, x1:m:nx1:m:n ≤⋯≤ xm:m:n are denoted as Prog-II CS within the censored scheme R = (R1, R2, …, Rm). It is acknowledged that n=m+i=1mRi, and several censoring schemes, including Type-II censoring and the complete sample, are considered its specific instances.2 

A helpful description and well-crafted summary of Prog-II CS are available in references such as Refs. 3–15.

With the censoring scheme (R1, R2, …, Rm) from a population defined by the cumulative distribution function (CDF) f(x) and the probability density function (PDF) F(x), consider xi = xi:m:n where i = 1, …, m as Prog-II CS. The joint density function in this case can be written as
(1)
where A=n(n1R1)(n2R1R2)ni=1m1(Ri+1).
Chesneau et al.16 introduced a novel extension of the modified Lindley distribution, incorporating positive support through the application of the inverse transformation y = 1/x. This extension bridges the gap between the inverted exponential and inverted Lindley distributions by performing as a simple alternative or intermediate distribution known as the inverted modified Lindley (IML) distribution. Applications of the IML distribution can be found in biology, reliability, and other real-world contexts. By combining the inverted exponential distribution with parameter α, inverted gamma distribution with parameters 2 and 2α, and inverted exponential distribution with parameter 2α. The CDF of IML distribution is expressed as
(2)
and the corresponding PDF of the form
(3)
the associated survival function S(x) is acquired as follows:
(4)
Therefore, we can formulate the relevant hazard rate function h(x) as follows:
(5)

In recent times, numerous scholars have contributed to the statistical inferences of the IMLD. For example, Kumar et al.17 analyzed the IML distribution using dual generalized order statistics, while Kumar et al.18 explored the inverted modified Lindley distribution with classical inferences of order statistics and practical applications.

Figures 14 showcase the plots for the PDF, CDF, survival function, and hazard rate function, each depicted with varying parameter values. These visual representations illustrate that the IML distribution exhibits an unimodal distribution and can demonstrate right skewness. The hazard rate function is also unimodal in (x), demonstrating significant flexibility.

FIG. 1.

The PDF graph for the IMLD.

FIG. 1.

The PDF graph for the IMLD.

Close modal
FIG. 2.

The CDF graph for the IMLD.

FIG. 2.

The CDF graph for the IMLD.

Close modal
FIG. 3.

The hazard rate function graph for the IML distribution.

FIG. 3.

The hazard rate function graph for the IML distribution.

Close modal
FIG. 4.

The survival function graph for the IML distribution.

FIG. 4.

The survival function graph for the IML distribution.

Close modal

In this paper, our goal is to devise an estimation method for IML distribution parameters in the presence of Prog-II CS. We derive maximum likelihood estimates (MLEs) and corresponding approximate confidence intervals (ACIs). Furthermore, Bayesian point and interval estimates are obtained based on MLE under squared error (SE) and linear exponential (LINEX) loss functions. To validate the proposed approaches, we conduct a simulation study and apply them to two real datasets.

The remaining sections of the paper are structured as follows: Sec. II presents the MLEs for the unknown parameters, S(x) and h(x), along with their associated ACIs. In Sec. III, the use of Markov chain Monte Carlo (MCMC) for Bayesian estimation is discussed. Section IV delves into two applications using real-world datasets. Section V provides an extensive summary of the simulation study’s results. Section VI concludes with some results.

In this section, we derive the MLEs and ACIs for the parameter α using the classical likelihood function. Let X1, X2, …, Xm be Prog-II CS for the IML distribution with R = (R1, R2, …, Rm). The likelihood function can be expressed based on Eqs. (1)(3) as
(6)
The log-likelihood function in Eq. (6) can be expressed as
(7)
By taking partial derivatives of Eq. (7) for α and setting them equal to zero, we obtain the following equations:
(8)
Due to the intricate nature of the normal equation in Eq. (8), the MLE of α, denoted as α̂, can be computed numerically from Eq. (8) using the Newton–Raphson procedure. Additionally, the MLEs of S(t) and h(t) at a specific time “t” can be derived through the invariance property of the MLE. By substituting the MLE α̂ for the parameter α in Eqs. (2) and (3), the MLEs of S(t) in Eq. (4) and h(t) in Eq. (5) are determined, respectively, as
(9)
and
(10)

In addition to obtaining a singular estimate for the unknown parameter, it is crucial to establish a range of values that, with a specified level of confidence, can encompass the true parameter. This statistical inference process is known as interval estimation. In this context, we suggest using the asymptotic normality of the MLE to construct the ACI for α.

The asymptotic normality of the MLE α can be characterized as α̂N(α,I1(α)), where I−1(α) is the variance–covariance matrix derived from the Fisher information matrix. In practical applications, one can employ the observed Fisher information to estimate the variance-covariance matrix. In this scenario, we observe α̂N(α,I1(α)), where I1 can be defined as Eq. (11):
(11)

Thus, the (1-α)% ACI for the parameter α is given by α̂±zη/2Var̂(α̂), where zη/2 represents the upper percentile of the standard normal distribution. Furthermore, to establish the ACIs for S(t) and h(t) both functions contingent on the parameter α, we must determine their variances. To approximate the variance estimates for Ŝ(t) in Eq. (9) and ĥ(t) in Eq. (10), we employ the delta method. This method, a general approach for calculating ACIs for functions of MLE estimates, is detailed by Greene.19 

Consequently, the variances of Ŝ(t) and ĥ(t) are expressed as follows:

σ̂S(t)2=Ŝ(t)TV̂Ŝ(t) and σ̂h(t)2=ĥ(t)TV̂ĥ(t); here, Ŝ(t) and ĥ(t) represent the gradients of Ŝ(t) and ĥ(t), respectively, with respect to α, and V̂=I1(α).

Thus, the (1 − η)100% ACIs for S(t) and h(t) are obtained as Ŝ(t)±Zη/2σ̂S(t)2 and ĥ(t)±Zη/2σ̂h(t)2.

Given the computational expense associated with obtaining CI through classical methods, it is pragmatic to explore Bayesian methodology as an alternative. In this section, we derive Bayesian estimates for the unknown model parameters and corresponding credible intervals (CRIs) using the Prog-II CS, specifically focusing on the SE and LINEX loss functions. For this particular problem, we assume independent gamma priors for all unknown parameters α. Let α follow a Gamma(ab) distribution, with non-negative hyperparameters a and b, both greater than 0. Consequently, the prior distribution for α is formulated as
(12)
The posterior density for α is acquired by merging the prior distribution in Eq. (12) with the classical likelihood function provided in Eq. (7),
(13)
Obtaining the Bayes estimator in Eq. (13) is not achievable through analytical methods. To compute crucial estimators for α, S(t), and h(t) as well as their respective CRIs, we suggest employing the MCMC procedure. To enable these estimations, the first essential step is to accurately define the conditional posterior distribution of α. The conditional posterior distribution of α can be represented as follows by Eq. (13):
(14)

The conditional distribution for α does not conform to any familiar density, as indicated in Eq. (14). To generate samples from Eq. (14) using a normal proposal distribution, the Metropolis–Hastings (M–H) technique is implemented in this situation. The subsequent steps are utilized to generate samples through the M–H technique and derive Bayesian estimates

  1. Define the initial value for α as α0 = α̂.

  2. Set j = 1.

  3. Generate αj using Eq. (14) with a normal proposal distribution through M–H steps.

  4. For a given value of (t), calculate S(j)(t) in Eq. (15) and h(j)(t) in Eq. (16) as
    (15)
    and
    (16)
  5. Set j = j + 1.

  6. Repeat Steps 3 to 5, M times to acquire
  7. Calculate the Bayesian estimates after discarding z samples as a burn-in period, as outlined below:
  8. To determine the CRIs, arrange α(j), S(j)(t), and h(j)(t) for j = z + 1, …, m. Subsequently, one can adopt the approach proposed by Chen and Shao20 to derive the necessary interval for the parameter α, as outlined below:
    the identical procedure can be employed to derive the CRIs for S(t) and h(t).

The initial dataset originates from the Open University (1993) and pertains to the prices of 31 different children’s wooden toys available in a Suffolk craft shop in April 1991. Shafiei et al.21 have conducted an analysis of this dataset. Chesneau et al.16 utilized this data to examine the IML distribution. The P-value stands at 0.7589, and the Kolmogorov–Smirnov (K–S) distance between the empirical distribution of failure data and the CDF of the IML distribution is 0.1225. According to Fig. 5, the IML distribution corresponds well with the provided data. Afterward, a progressive censoring method using R = (10, 10, 0, 0, 0, 0, 0, 0, 0, 0) was utilized, and a Prog-II censored sample with a sample size of m = 20 was chosen randomly from 30 failed observations, as shown in Table I.

FIG. 5.

Plots of fitted functions and PP plot of the IWL distribution: Data 1.

FIG. 5.

Plots of fitted functions and PP plot of the IWL distribution: Data 1.

Close modal
TABLE I.

Prog-II CS for children’s wooden toys.

4.2 1.12 1.39 3.99 2.15 12.2 
1.74 5.81 1.7 0.5 0.99 11.5 7.36 
5.12 0.9 1.99 6.24 2.6 ⋯ 
4.2 1.12 1.39 3.99 2.15 12.2 
1.74 5.81 1.7 0.5 0.99 11.5 7.36 
5.12 0.9 1.99 6.24 2.6 ⋯ 

Table II displays the MLEs for the parameters α̂ and the reliability functions S(t)̂ and h(t)̂, which were obtained from the Prog-II failure data given in Table I. Furthermore, for different values of the shape parameter a in the LINEX loss function, which correspond to the parameters α and the functions S(t) and h(t), Bayes estimates are calculated. The results are also shown in Table II for the parameter and the reliability functions S(t) and h(t). These Bayes estimates are computed taking into account both the SE and LINEX loss functions. The reliability functions via MLE and the probability profile of the IML parameter were covered in Fig. 6. When we observe that the profile likelihood has a single maximum and is symmetric and unimodal, it usually indicates a well-behaved MLE. Figure 7 displays trace plots of the MCMC results to show how the method’s convergence is graphically represented.

TABLE II.

Point estimates for the parameter α and the function reliability.

LINEX
ParametersMLESELa = −2a = 0.0001a = 2
α 2.073 48 2.068 48 2.068 62 2.068 48 2.068 34 
S(t0.339 389 0.338 724 0.338 727 0.338 724 0.338 722 
h(t0.004 803 17 0.004 930 78 0.004 930 86 0.004 930 78 0.004 930 69 
LINEX
ParametersMLESELa = −2a = 0.0001a = 2
α 2.073 48 2.068 48 2.068 62 2.068 48 2.068 34 
S(t0.339 389 0.338 724 0.338 727 0.338 724 0.338 722 
h(t0.004 803 17 0.004 930 78 0.004 930 86 0.004 930 78 0.004 930 69 
FIG. 6.

Likelihood profile to check of maximum likelihood estimation: Data 1.

FIG. 6.

Likelihood profile to check of maximum likelihood estimation: Data 1.

Close modal
FIG. 7.

The posterior density function and the trace plots for the parameter and the reliability functions: Data 1.

FIG. 7.

The posterior density function and the trace plots for the parameter and the reliability functions: Data 1.

Close modal

The 95% ACIs and CRIs are used to calculate the parameters α and the reliability functions S(t) and h(t). Table III presents the obtained results.

TABLE III.

The 95% confidence intervals of α and the function reliability.

ParameterMLEMCMC
α {1.187 41, 2.959 55} {2.041 22, 2.085 38} 
S(t{0.222 018, 0.456 759} {0.3351, 0.340 963} 
h(t{−0.016 089 3, 0.025 695 6} {0.004 529 76, 0.005 623 43} 
ParameterMLEMCMC
α {1.187 41, 2.959 55} {2.041 22, 2.085 38} 
S(t{0.222 018, 0.456 759} {0.3351, 0.340 963} 
h(t{−0.016 089 3, 0.025 695 6} {0.004 529 76, 0.005 623 43} 

The time between failures for repairable objects, which was obtained from Murthy et al.,22 made up the second dataset. This dataset was used by Chesneau et al.16 to examine the IML distribution. The Kolmogorov–Smirnov (K–S) distance between the CDF of the IML distribution and the empirical distribution of failure data is 0.1394, and the P-value is 0.6043. The IML distribution fits the given data very well, as Fig. 8 illustrates. Afterward, from 30 failed observations, a Prog-II censored sample with an effective size of m = 15 was randomly chosen using a progressive censored procedure with R = (0, 0, 0, 0, 0, 0, 0, 5, 10, 0, 0, 0), in Table IV.

FIG. 8.

Plots of fitted functions and PP plot of the IWL distribution: Data 2.

FIG. 8.

Plots of fitted functions and PP plot of the IWL distribution: Data 2.

Close modal
TABLE IV.

Prog-II CS for the time between failures.

1.43 0.11 0.71 0.77 2.63 1.49 3.46 1.74 
2.46 0.59 0.74 1.23 0.94 4.36 0.4  
1.43 0.11 0.71 0.77 2.63 1.49 3.46 1.74 
2.46 0.59 0.74 1.23 0.94 4.36 0.4  

Table V displays the MLEs for the parameter α̂ and the reliability functions S(t)̂ and h(t)̂, which were obtained from the Prog-II failure data given in Table IV. Furthermore, for different values of the shape parameter a in the LINEX loss function, which relate to the parameters α and the functions S(t) and h(t), Bayes estimates are calculated. The results are also shown in Table V for the parameter and the reliability functions S(t) and h(t). These Bayes estimates are computed taking into account both the SE and LINEX loss functions. The reliability functions via MLE and the probability profile of the IML parameter were covered in Fig. 9. When we observe that the profile likelihood has a single, symmetric and unimodal point, it usually indicates a well-behaved MLE. Figure 10 presents trace plots of the MCMC findings to visually represent the MCMC algorithm’s convergence.

TABLE V.

Point estimates for the parameter α and the function reliability.

LINEX
ParametersMLESELa = −2a = 0.0001a = 2
α 1.097 68 1.095 82 1.095 83 1.095 81 1.095 81 
S(t0.188 423 0.188 046 0.188 046 0.188 046 0.188 045 
h(t0.613 994 0.620 103 0.620 204 0.620 103 0.620 001 
LINEX
ParametersMLESELa = −2a = 0.0001a = 2
α 1.097 68 1.095 82 1.095 83 1.095 81 1.095 81 
S(t0.188 423 0.188 046 0.188 046 0.188 046 0.188 045 
h(t0.613 994 0.620 103 0.620 204 0.620 103 0.620 001 
FIG. 9.

Likelihood profile to check of maximum likelihood estimation: Data 2.

FIG. 9.

Likelihood profile to check of maximum likelihood estimation: Data 2.

Close modal
FIG. 10.

The posterior density function and the trace plots for the parameter and the reliability functions: Data 2.

FIG. 10.

The posterior density function and the trace plots for the parameter and the reliability functions: Data 2.

Close modal

The 95% ACIs and CRIs are used to calculate the parameters α and the reliability functions S(t) and h(t). Table VI presents the obtained results.

TABLE VI.

The 95% confidence intervals of α and the function reliability.

ParameterMLEMCMC
α {0.760 912, 1.434 44} {1.0919, 1.105 27} 
S(t{0.120 406, 0.256 439} {0.187 253, 0.189 951} 
h(t{−0.470 97, 1.698 96} {0.589 973, 0.632 891} 
ParameterMLEMCMC
α {0.760 912, 1.434 44} {1.0919, 1.105 27} 
S(t{0.120 406, 0.256 439} {0.187 253, 0.189 951} 
h(t{−0.470 97, 1.698 96} {0.589 973, 0.632 891} 

Modern statistical problems demonstrate that comprehending statistical inferential methods necessitates a blend of theoretical and applied skills. This section focuses on the numerical technique, while the previous sections addressed the analytical one, through a simulation study. For each simulation, 1000 Prog-II censored samples were used in a simulation analysis to compare the IML distribution’s parameter estimators and particular lifetime parameters.

Prog-II censored samples were generated using the IML distribution with initial values of α = 0.6, S(t) = 0.2, and h(t) = 1.5. The MSE obtained by the resulting estimators of α, S(t), and h(t) considered comparisons between various approaches for k = 1, 2, 3 (μ1 = αμ2 = S(t), μ3 = h(t)), as MSE(μk)=11000i=11000μ̂kiμk2. Another criterion was applied to compare the 95% CIs by using asymptotic distributions of the MLEs and CRIs. For the comparison, coverage probability (CP) and ACLs were employed. In this analysis, the progressive systems listed below were taken into consideration:

  • Scheme A: R1 = nm, Ri = 0 for i ≠ 1.

  • Scheme B: Rm2=Rm2+1=nm2,;Ri=0 for im2 and im2+1.

  • Scheme C: Rm = nm, Ri = 0 for im. Tables VIIIX display the estimated parameter values together with their MSEs, and Table X presents the results of the ACL and CP of the 95% CIs.

TABLE VII.

The biased and MSE in bold of the ML and Bayesian estimates for α.

MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 0.5991 0.5984 0.5973 0.5981 
0.5994 2.5655 2.5435 2.5535 
0.5232 0.5235 0.5335 0.5334 
2.8684 2.8676 2.8776 2.8576 
0.6797 0.6798 0.6898 0.7198 
2.3112 2.3113 2.4113 2.3513 
(40, 20) 0.8980 0.8984 0.9784 0.8995 
1.7262 1.7253 1.7353 1.7254 
0.6273 0.6278 0.6277 0.6276 
2.4733 2.4723 2.4722 2.4724 
0.3209 0.3308 0.3508 0.3209 
3.5311 3.5314 3.5312 3.5315 
(40, 30) 0.6317 0.6318 0.6327 0.6336 
2.4957 2.4965 2.4968 2.4966 
0.5930 0.5938 0.5937 0.5945 
2.5879 2.5892 2.5893 2.5894 
0.4282 0.468 0.448 0.4258 
3.1393 3.14 3.54 3.64 
(60, 30) 0.9160 0.9168 0.9169 0.9171 
1.6975 1.6958 1.6957 1.6959 
0.2604 0.2602 0.2603 0.2611 
3.7622 3.7631 3.7634 3.7632 
0.7679 0.7674 0.7673 0.7678 
2.0509 2.0528 2.0534 2.0529 
(60, 40) 0.8903 0.8901 0.8902 0.8901 
1.72 0.1.74 1.73 1.75 
0.8548 0.8546 0.8545 0.8544 
1.8098 1.8101 1.8103 1.81012 
0.5761 0.5762 0.5763 0.575 
2.6375 2.6366 2.6376 2.6368 
MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 0.5991 0.5984 0.5973 0.5981 
0.5994 2.5655 2.5435 2.5535 
0.5232 0.5235 0.5335 0.5334 
2.8684 2.8676 2.8776 2.8576 
0.6797 0.6798 0.6898 0.7198 
2.3112 2.3113 2.4113 2.3513 
(40, 20) 0.8980 0.8984 0.9784 0.8995 
1.7262 1.7253 1.7353 1.7254 
0.6273 0.6278 0.6277 0.6276 
2.4733 2.4723 2.4722 2.4724 
0.3209 0.3308 0.3508 0.3209 
3.5311 3.5314 3.5312 3.5315 
(40, 30) 0.6317 0.6318 0.6327 0.6336 
2.4957 2.4965 2.4968 2.4966 
0.5930 0.5938 0.5937 0.5945 
2.5879 2.5892 2.5893 2.5894 
0.4282 0.468 0.448 0.4258 
3.1393 3.14 3.54 3.64 
(60, 30) 0.9160 0.9168 0.9169 0.9171 
1.6975 1.6958 1.6957 1.6959 
0.2604 0.2602 0.2603 0.2611 
3.7622 3.7631 3.7634 3.7632 
0.7679 0.7674 0.7673 0.7678 
2.0509 2.0528 2.0534 2.0529 
(60, 40) 0.8903 0.8901 0.8902 0.8901 
1.72 0.1.74 1.73 1.75 
0.8548 0.8546 0.8545 0.8544 
1.8098 1.8101 1.8103 1.81012 
0.5761 0.5762 0.5763 0.575 
2.6375 2.6366 2.6376 2.6368 
TABLE VIII.

The biased and MSE in bold of the ML and Bayesian estimates for S(t).

MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 0.029 0.0286 0.0291 0.0292 
0.1077 0.1066 0.1076 0.1075 
0.0461 0.047 0.048 0.046 
0.1857 0.1867 0.1876 0.1856 
0.0681 0.0684 0.0689 0.0685 
0.0829 0.0859 0.0879 0.0889 
(40, 20) 0.130 0.134 0.132 0.135 
0.0593 0.0594 0.0592 0.0595 
0.0441 0.0444 0.0442 0.0445 
0.0972 0.0983 0.0974 0.0992 
0.1668 0.1789 0.1699 0.1771 
0.2733 0.2747 0.2746 0.2745 
(40, 30) 0.0241 0.0230 0.0239 0.0238 
0.1246 0.1247 0.1248 0.1251 
0.0243 0.0246 0.0244 0.0248 
0.1125 0.1175 0.1155 0.1174 
0.0797 0.0798 0.0799 0.0898 
0.1897 0.1898 0.1990 0.1899 
(60, 30) 0.1273 0.1274 0.1275 0.1276 
0.0655 0.0658 0.0657 0.0656 
0.2160 0.2164 0.2162 0.2166 
0.3271 0.3273 0.3274 0.3275 
0.1023 0.1022 0.1021 0.1017 
0.0643 0.0645 0.0646 0.0647 
(60, 40) 0.1382 0.1385 0.1386 0.138 27 
0.0486 0.0496 0.0488 0.0491 
0.1301 0.132 0.134 0.133 
0.051 0.055 0.13 0.14 
0.0174 0.0175 0.0173 0.0176 
0.1143 0.1146 0.1145 0.1147 
MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 0.029 0.0286 0.0291 0.0292 
0.1077 0.1066 0.1076 0.1075 
0.0461 0.047 0.048 0.046 
0.1857 0.1867 0.1876 0.1856 
0.0681 0.0684 0.0689 0.0685 
0.0829 0.0859 0.0879 0.0889 
(40, 20) 0.130 0.134 0.132 0.135 
0.0593 0.0594 0.0592 0.0595 
0.0441 0.0444 0.0442 0.0445 
0.0972 0.0983 0.0974 0.0992 
0.1668 0.1789 0.1699 0.1771 
0.2733 0.2747 0.2746 0.2745 
(40, 30) 0.0241 0.0230 0.0239 0.0238 
0.1246 0.1247 0.1248 0.1251 
0.0243 0.0246 0.0244 0.0248 
0.1125 0.1175 0.1155 0.1174 
0.0797 0.0798 0.0799 0.0898 
0.1897 0.1898 0.1990 0.1899 
(60, 30) 0.1273 0.1274 0.1275 0.1276 
0.0655 0.0658 0.0657 0.0656 
0.2160 0.2164 0.2162 0.2166 
0.3271 0.3273 0.3274 0.3275 
0.1023 0.1022 0.1021 0.1017 
0.0643 0.0645 0.0646 0.0647 
(60, 40) 0.1382 0.1385 0.1386 0.138 27 
0.0486 0.0496 0.0488 0.0491 
0.1301 0.132 0.134 0.133 
0.051 0.055 0.13 0.14 
0.0174 0.0175 0.0173 0.0176 
0.1143 0.1146 0.1145 0.1147 
TABLE IX.

The biased and MSE in bold of the ML and Bayesian estimates for h(t).

MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 2.4069 2.3013 2.7808 2.780 47 
4.624 4.156 4.01 6.448 
1.2713 1.2821 1.2796 1.2896 
4.9592 4.885 4.9041 4.9042 
3.3029 3.3083 3.3238 3.3238 
6.496 6.6362 6.926 6.3428 
(40, 20) 0.6951 0.6949 0.6954 0.6955 
6.6308 6.6907 6.6905 6.6908 
3.6233 3.5704 3.7323 3.7323 
9.49 9.114 9.851 9.609 
8.9154 8.9152 8.9122 8.9142 
6.873 6.874 6.802 6.947 
(40, 30) 1.3323 1.3498 1.356 1.358 
2.1935 2.334 2.4011 2.2657 
4.5321 4.5644 5.2955 5.2964 
2.036 2.941 2.779 2.532 
4.0589 4.0475 4.0038 4.0638 
2.463 2.15 2.397 3.888 
(60, 30) 0.1537 0.1501 0.1503 0.1523 
6.8444 6.8081 6.8083 6.8082 
1.0362 1.0299 1.0296 1.0298 
7.859 7.720 7.713 7.727 
4.3722 4.3956 4.3982 4.3982 
9.1621 9.3795 9.4024 9.3566 
(60, 40) 1.7763 1.777 1.7774 1.778 
5.1752 5.2066 5.2081 5.2051 
2.4236 2.4258 2.4265 2.4273 
5.8846 5.8956 5.8987 5.8924 
5.6744 5.8171 5.3789 5.3799 
6.93 6.28 7.15 6.49 
MCMC
LINEX
(m, n)SchemeMLESELa = −2a = 2
(30, 20) 2.4069 2.3013 2.7808 2.780 47 
4.624 4.156 4.01 6.448 
1.2713 1.2821 1.2796 1.2896 
4.9592 4.885 4.9041 4.9042 
3.3029 3.3083 3.3238 3.3238 
6.496 6.6362 6.926 6.3428 
(40, 20) 0.6951 0.6949 0.6954 0.6955 
6.6308 6.6907 6.6905 6.6908 
3.6233 3.5704 3.7323 3.7323 
9.49 9.114 9.851 9.609 
8.9154 8.9152 8.9122 8.9142 
6.873 6.874 6.802 6.947 
(40, 30) 1.3323 1.3498 1.356 1.358 
2.1935 2.334 2.4011 2.2657 
4.5321 4.5644 5.2955 5.2964 
2.036 2.941 2.779 2.532 
4.0589 4.0475 4.0038 4.0638 
2.463 2.15 2.397 3.888 
(60, 30) 0.1537 0.1501 0.1503 0.1523 
6.8444 6.8081 6.8083 6.8082 
1.0362 1.0299 1.0296 1.0298 
7.859 7.720 7.713 7.727 
4.3722 4.3956 4.3982 4.3982 
9.1621 9.3795 9.4024 9.3566 
(60, 40) 1.7763 1.777 1.7774 1.778 
5.1752 5.2066 5.2081 5.2051 
2.4236 2.4258 2.4265 2.4273 
5.8846 5.8956 5.8987 5.8924 
5.6744 5.8171 5.3789 5.3799 
6.93 6.28 7.15 6.49 
TABLE X.

ALs and CPs in bold for estimators of α, S(t), and h(t).

αS(t)h(t)
(m, n)SchemeMLEMCMCMLEMCMCMLEMCMC
(30, 20) 0.1985 0.0041 0.1027 0.0021 4.444 2.3562 
0.934 0.9343 0.9711 0.9649 0.9748 0.9592 
0.1704 0.0039 0.0857 0.002 6.9868 0.1585 
0.9699 0.9405 0.9636 0.9264 0.9494 0.9366 
0.193 0.0041 0.0829 0.0018 8.3845 0.3949 
0.9318 0.9463 0.943 0.955 0.9297 0.9555 
(40, 20) 0.3996 0.0088 0.1019 0.0022 3.722 0.0803 
0.9332 0.9322 0.943 0.935 0.952 0.9258 
0.2429 0.0052 0.1186 0.0025 3.9437 1.3542 
0.9746 0.9363 0.9289 0.9539 0.953 0.9504 
0.2181 0.0046 0.1828 0.0038 7.9732 0.1676 
0.9519 0.9653 0.9301 0.9494 0.9686 0.9297 
(40, 30) 0.2378 0.0054 0.1019 0.0023 4.2313 0.2317 
0.9737 0.9521 0.9301 0.9492 0.9307 0.9539 
0.2688 0.0058 0.138 0.003 3.330 2.9568 
0.9253 0.9605 0.9492 0.9524 0.9724 0.9525 
0.2414 0.0054 0.1835 0.0041 3.5646 0.6836 
0.9423 0.9745 0.9478 0.9654 0.9506 0.9297 
(60, 30) 0.330 0.0066 0.0807 0.0016 2.2939 0.0464 
0.9743 0.9328 0.9624 0.95 0.9344 0.9655 
0.0991 0.0021 0.0757 0.0016 2.7249 0.0576 
0.9292 0.9548 0.9643 0.9423 0.9302 0.959 
0.252 0.0051 0.0883 0.0018 8.2011 0.1678 
0.9311 0.9581 0.9626 0.9353 0.9676 0.973 
(60, 40) 0.2914 0.0059 0.0792 0.0016 3.3368 0.0678 
0.9448 0.947 0.9534 0.9504 0.9665 0.9331 
0.254 0.0055 0.0742 0.0016 3.8786 0.0835 
0.9689 0.963 0.954 0.9587 0.9613 0.9675 
0.2416 0.005 0.1336 0.0027 9.535 4.3245 
0.9301 0.9717 0.9684 0.9749 0.9544 0.9729 
αS(t)h(t)
(m, n)SchemeMLEMCMCMLEMCMCMLEMCMC
(30, 20) 0.1985 0.0041 0.1027 0.0021 4.444 2.3562 
0.934 0.9343 0.9711 0.9649 0.9748 0.9592 
0.1704 0.0039 0.0857 0.002 6.9868 0.1585 
0.9699 0.9405 0.9636 0.9264 0.9494 0.9366 
0.193 0.0041 0.0829 0.0018 8.3845 0.3949 
0.9318 0.9463 0.943 0.955 0.9297 0.9555 
(40, 20) 0.3996 0.0088 0.1019 0.0022 3.722 0.0803 
0.9332 0.9322 0.943 0.935 0.952 0.9258 
0.2429 0.0052 0.1186 0.0025 3.9437 1.3542 
0.9746 0.9363 0.9289 0.9539 0.953 0.9504 
0.2181 0.0046 0.1828 0.0038 7.9732 0.1676 
0.9519 0.9653 0.9301 0.9494 0.9686 0.9297 
(40, 30) 0.2378 0.0054 0.1019 0.0023 4.2313 0.2317 
0.9737 0.9521 0.9301 0.9492 0.9307 0.9539 
0.2688 0.0058 0.138 0.003 3.330 2.9568 
0.9253 0.9605 0.9492 0.9524 0.9724 0.9525 
0.2414 0.0054 0.1835 0.0041 3.5646 0.6836 
0.9423 0.9745 0.9478 0.9654 0.9506 0.9297 
(60, 30) 0.330 0.0066 0.0807 0.0016 2.2939 0.0464 
0.9743 0.9328 0.9624 0.95 0.9344 0.9655 
0.0991 0.0021 0.0757 0.0016 2.7249 0.0576 
0.9292 0.9548 0.9643 0.9423 0.9302 0.959 
0.252 0.0051 0.0883 0.0018 8.2011 0.1678 
0.9311 0.9581 0.9626 0.9353 0.9676 0.973 
(60, 40) 0.2914 0.0059 0.0792 0.0016 3.3368 0.0678 
0.9448 0.947 0.9534 0.9504 0.9665 0.9331 
0.254 0.0055 0.0742 0.0016 3.8786 0.0835 
0.9689 0.963 0.954 0.9587 0.9613 0.9675 
0.2416 0.005 0.1336 0.0027 9.535 4.3245 
0.9301 0.9717 0.9684 0.9749 0.9544 0.9729 

We note the following patterns from the outcomes:

  1. According to Tables VIIIX, as sample sizes increase, MSEs get smaller, and BE have the smallest MSEs for the parameters α, S(t) and h(t). Therefore, when all variables are considered, Bayes estimation outperforms MLEs methods.

  2. The estimates from Bayes are better for α, S(t) and h(t) in that the MSEs are smaller.

  3. For smaller MSEs with c = −2.0, the LINEX estimates with c = 2.0 are greater estimates.

  4. The performance of Scheme A is greater than Scheme B and C due to its smaller MSEs for fixed-value samples n and m failure time intervals.

  5. The results from the CRIs are very perfect than those from the ACIs for identified failures, approaches, and size of the sample, as shown in Table X.

In this investigation, employing a Prog-II CS, we considered both Bayesian and non-Bayesian estimations for the parameters and survival functions of the IMLD. Alongside obtaining the MLEs and associated ACIs, we also introduced Bayesian estimations for the unknown parameters. It should be noted that although explicit formulation of Bayes estimators is not possible, they can be obtained by numerical integration. Consequently, we utilized the MCMC method to obtain point estimates and the CRIs. Two real datasets were utilized to demonstrate the effectiveness of the proposed estimators. We also examined the efficiency of alternative strategies using a simulated analysis that included a range of sample sizes, effective sample sizes, and sampling methods. Future studies might investigate toward statistics applied to the IML distribution. In future works, we will use Joint Prog-II censored data to estimate the IML distribution’s parameters and compare it to all other censored algorithms that we will use.

This research project was supported by the Researchers Supporting Project No. (RSP2024R488), King Saud University, Riyadh, Saudi Arabia.

The authors have no conflicts to disclose.

Mustafa M. Hasaballah: Data curation (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal). Yusra A. Tashkandy: Funding acquisition (equal); Writing – review & editing (equal). M. E. Bakr: Data curation (equal); Project administration (equal); Validation (equal). Oluwafemi Samson Balogun: Investigation (equal); Supervision (equal); Validation (equal). Dina A. Ramadan: Conceptualization (equal); Formal analysis (equal); Software (equal).

The data that support the findings of this study are available within the article.

1
M. M.
Buzaridah
,
D. A.
Ramadan
, and
B. S.
El-Desouky
, “
Estimation of some lifetime parameters of flexible reduced logarithmic-inverse lomax distribution under progressive type-II censored Data
,”
J. Math.
2022
,
1690458
(n.d.).
2
K. A.
Elnagar
,
D. A.
Ramadan
, and
B. S.
El-Desouky
, “
Statistical inference to the parameter of the inverse power Ishita distribution under progressive Type-II censored data with application to COVID-19 data
,”
J. Math.
2022
,
7704167
(n.d.).
3
D.
Kundu
and
A.
Joarder
, “
Analysis of type-II progressively hybrid censored data
,”
Comput. Stat. Data Anal.
50
,
2509
2528
(
2006
).
4
H.
Ng
,
L.
Luo
,
Y.
Hu
, and
F.
Duan
, “
Parameter estimation of three-parameter Weibull distribution based on progressively type-II censored samples
,”
J. Stat. Comput. Simul.
82
(
11
),
1661
1678
(
2012
).
5
K.
Lee
and
Y.
Cho
, “
Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive type II censoring
,”
J. Appl. Stat.
44
,
811
832
(
2017
).
6
S. K.
Tse
,
C.
Yang
, and
H. K.
Yuen
, “
Statistical analysis of Weibull distributed lifetime data under type II progressive censoring with binomial removals
,”
J. Appl. Stat.
27
,
1033
1043
(
2000
).
7
L.
Wang
,
K.
Wu
, and
X.
Zuo
, “
Inference and prediction of progressive type-II censored data from unit-generalized Rayleigh distribution
,”
Hacettepe J. Math. Stat.
51
,
1752
1767
(
2022
).
8
N.
Akdam
, “
Bayes estimation for the Rayleigh–Weibull distribution based on progressive type-II censored samples for cancer data in medicine
,”
Symmetry
15
,
1754
(
2023
).
9
S.
Dutta
,
S.
Dey
, and
S.
Kayal
, “
Bayesian survival analysis of logistic exponential distribution for adaptive progressive type-II censored data
,”
Comput. Stat.
(published online)
(
2023
).
10
M.
Elgarhy
,
A.
Al Mutairi
,
A. S.
Hassan
,
C.
Chesneau
, and
A. H.
Abdel-Hamid
, “
Bayesian and non-Bayesian estimations of truncated inverse power Lindley distribution under progressively type-II censored data with applications
,”
AIP Adv.
13
(
9
),
095130
(
2023
).
11
A.
Elshahhat
,
R.
Alotaibi
, and
M.
Nassar
, “
Reliability and the engineering applications of the generalized half-normal model via an adaptive progressive hybrid censored mechanism
,”
AIP Adv.
13
(
11
),
115310
(
2023
).
12
N.
Alsadat
,
V. B. V.
Nagarjuna
,
A. S.
Hassan
,
M.
Elgarhy
,
H.
Ahmad
, and
E. M.
Almetwally
, “
Marshall–Olkin Weibull–Burr XII distribution with application to physics data
,”
AIP Adv.
13
(
9
),
095325
(
2023
).
13
M. M.
Yousef
,
R.
Alsultan
, and
S. G.
Nassr
, “
Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on type-II progressive censoring data
,”
Math. Biosci. Eng.
20
(
2
),
1674
1694
(
2023
).
14
W. S.
Abu El Azm
,
R.
Aldallal
,
H. M.
Aljohani
, and
S. G.
Nassr
, “
Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored
,”
Math. Biosci. Eng.
19
(
6
),
6252
6276
(
2022
).
15
S. G.
Nassr
,
W. S.
Abu El Azm
, and
E. M.
Almetwally
, “
Statistical inference for the extended Weibull distribution based on adaptive type-II progressive hybrid censored competing risks data
,”
Thailand Stat.
19
(
3
),
547
564
(
2021
), https://ph02.tci-thaijo.org/index.php/thaistat/article/view/244518.
16
C.
Chesneau
,
L.
Tomy
,
J.
Gillariose
, and
F.
Jamal
, “
The inverted modified Lindley distribution
,”
J. Stat. Theory Pract.
14
(
3
),
46
17
(
2020
).
17
D.
Kumar
,
M.
Nassar
,
S.
Dey
et al, “
Analysis of an inverted modified Lindley distribution using dual generalized order statistics
,”
Strength Mater.
54
,
889
904
(
2022
).
18
D.
Kumar
,
P.
Yadav
, and
J.
Kumar
, “
Classical inferences of order statistics for inverted modified Lindley distribution with applications
,”
Strength Mater.
55
,
441
455
(
2023
).
19
W. H.
Greene
,
Econometric Analysis
, 4th ed. (
Prentice Hall
,
New York
,
2000
).
20
M. H.
Chen
and
Q. M.
Shao
, “
Monte Carlo estimation of Bayesian credible and HPD intervals
,”
J. Comput. Graph. Stat.
8
,
69
92
(
1999
).
21
S.
Shafiei
,
S.
Darijani
, and
H.
Saboori
, “
Inverse Weibull power series distributions: Properties and applications
,”
J. Stat. Comput. Simul.
86
(
6
),
1069
1094
(
2016
).
22
D. N. P.
Murthy
,
M.
Xie
, and
R.
Jiang
, “
Weibull models
,”
Wiley Series in Probability and Statistics
(
Wiley
,
Hoboken
,
2004
).