This work addresses the analytical investigation of the prey–predator behavior modeled by nonlinear evolution equation systems with fractional derivative order. Through the New Extended Algebraic Method (NEAM), we unearthed diverse types of soliton solutions including bright, dark solitons, combined trigonometric function solutions, and singular solutions. Besides the results obtained in the work of Khater, some new complex soliton solutions are also unearthed. The NEAM can also be used like the synthesis of the two mathematical tools.

The coexistence and interfering of biological species have been one of the major concerns in wildlife reserves since the dawn of time. It is in this perspective that today, the modeling of natural phenomena has become a necessity to better understand wildlife interactions. They are most often clarified by systems of linear or nonlinear equations. In most cases, investigations focused on the bio-mathematical area (see Refs. 1–3). Obviously, the implementation of mathematical models describing the behavior of these phenomena is a major asset in bio-mathematics, but the resolution of these systems remains a major concern. Recently, in this way, the famous Prey–Predator (PP) model has been investigated by adopting two integration schemes. Some other works have been followed in Ref. 2.

The advent of analytical and numerical integration methods in recent decades has facilitated the resolution of the bio-mathematics models while taking into account the constraints of their validity, e.g., the auxiliary equation method, sine-Gordon expansion method, Khater method, rational method, generalized exp[−φ(ξ)]-expansion method, sub-ODE method, sine–cosine method, sinh-expansion method, (G′/G)-expansion method, Kudryashov method, new sub-ODE method, homogenous balance method, New Extended Algebraic Method (NEAM), rational hyperbolic function method, Hirota’s bilinear method, Darboux transformation method, and homoclinic breather limit method, reproducing kernel Hilbert space method and its different modification (see Refs. 5–,51 just to list a few).

In this particular work, we are interested to the prey–predator mathematics model having a fractional derivative order as follows:

$Htα=Hxx2α−βH+κ+1δH2−H3−HE,Etα=Exx2α+κHE−mE−δE3,$
(1)

and β, δ, κ, and m are positive parameters. The vigorous natural movement of the prey–predator mathematical model is defined by the relation between its parameters such as mβ = 0 and $κ+1δ−m=1$.

Here, H represents the prey population, and E is the predator population size. For the details of the preliminary definitions of the derivative order, see Ref. 9.

In Sec. I A, the transformation hypothesis is used to obtain the nonlinear ordinary equation (NODE). Thereafter, we apply the NEAM to investigate diverse soliton solutions to the mathematical model of the fractional derivative order of the PP system. In Sec. I B, some graphical representation and physical explanation of the obtained results are given. The conclusion is given in Sec. II.

In this section, we target diverse soliton solutions of the Predator–Prey (PP) system by employing the new extended algebraic method.20,21 The first item is to adopt the transformation as follows:

$ξ=xαα−vtαα.$
(2)

Here, α ϵ (0, 1) is the fractional derivative order.20,21 Inserting Eq. (2) into the set of coupled of nonlinear equations (1) turns to

$H′′+vH′−βH+κ+1δH2−H3−HE=0,E′′+vE′+κHE−mE−δE3=0.$
(3)

Assume the link between the prey and predator parameters, which is given by $E=Hδ$, the nonlinear ordinary equation (ODE) is obtained as

$H′′+vH′−βH+κH2−H3=0.$
(4)

We know to consider the solution of Eq. (4) in the following expression:

$H(ξ)=∑j=−NNHjQj(ξ),$
(5)

where Hj ≠ 0 (j = −1, −2, −3, …, −N, 0, 1, 2, 3, …, N) are parameters to be detected and N is the positive integer. However, Qj(ξ) is the solution of20,21

$Q′(ξ)=ln(ρ)(a+bQ(ξ)+cQ2(ξ)).$
(6)

Applying the balance principle, we have N = 1. Therewith, Eq. (5) reads

$H(ξ)=H0+H1Q(ξ)+H−1Q(ξ).$
(7)

Using Eqs. (7) and (6) into Eq. (4), thereafter collecting all the terms of Qj(ξ) and set to zero, we obtain the following results:

Case 1: For b2 − 4ac < 0 and c ≠ 0,

$H0=122b+−8ac+2b2lnp,v=4lnp2ac−lnp2b2+β2b+−8ac+2b2lnp−42ac+2b2+b−8ac+2b2,H1=0,H−1=2a⁡lnp,m=m,κ=−122b+−8ac+2b28lnp2ac−2lnp2b2−β2lnp−42ac+2b2+b−8ac+2b2,$
(8)
$H0=122b⁡lnp+122lnp2b2−8lnp2ac+4β,H1=0,H−1=2a⁡lnp,m=m,v=Ω1−4lnp2c2a+b2lnp22+b⁡lnp2lnp2b2−8lnp2ac+4β+β2,κ=−2Ω1−4lnp2c2a+b2lnp22+b⁡lnp2lnp2b2−8lnp2ac+4β+β2,$
(9)
$H0=122b+−8ac+2b2lnp,v=−4lnp2ac−lnp2b2+β2b+−8ac+2b2lnp−42ac+2b2+b−8ac+2b2,m=m,H1=2c⁡lnp,H−1=0,κ=−122b+−8ac+2b28lnp2ac−2lnp2b2−β2lnp−42ac+2b2+b−8ac+2b2,$
(10)
$H0=112b⁡lnp+122lnp2b2−8lnp2ac+4β,H1=2c⁡lnp,H−1=0,m=m,v=−Ω1−4lnp2c2a+b2lnp22+b⁡lnp2lnp2b2−8lnp2ac+4β+β2,Ω1=2lnp2b2−8lnp2ac+4β4lnp2ac−lnp2b2−β+24lnp2ac−lnp2b2−2βlnpb,κ=−2Ω1−4lnp2c2a+b2lnp22+b⁡lnp2lnp2b2−8lnp2ac+4β+β2.$
(11)

Consequently, we unearth the following two families of soliton solutions of the prey population size:

• From Eq. (8) or Eq. (9), we construct the general solution as follows:

$H1,1(ξ)=H0+H−1−b2σ+−(b2−4ac)2ctanρ−(b2−4ac)2ξ,$
(12)
$H1,2(ξ)=H0+H−1−b2c−−(b2−4ac)2ccotρ−(b2−4ac)2ξ,$
(13)
$H1,3(ξ)=H0+H−1−b2c+−(b2−4ac)2ctanρ−(b2−4ac)ξ±−pq(b2−4ac)2σsecρ−(b2−4ac)ξ,$
(14)
$H1,4(ξ)=H0+H−1−b2c−−(b2−4ac)2ccotρ−(b2−4ac)ξ±−pq(b2−4ac)2ccscρ−(b2−4ac)ξ,$
(15)
$H1,5(ξ)=H0+H−1−b2c+−(b2−4ac)2ctanρ−(b2−4ac)4ξ−−(b2−4ac)2ccotρ−(b2−4ac)4ξ.$
(16)
• (ii)

Using Eq. (10) or Eq. (11), the related soliton solutions to the prey population size give

$H1,6(ξ)=H0+H1−b2σ+−(b2−4ac)2ctanρ−(b2−4ac)2ξ,$
(17)
$H1,7(ξ)=H0+H1−b2c−−(b2−4ac)2ccotρ−(b2−4ac)2ξ,$
(18)
$H1,8(ξ)=H0+H1−b2c+−(b2−4ac)2ctanρ−(b2−4ac)ξ±−pq(b2−4ac)2σsecρ−(b2−4ac)ξ,$
(19)
$H1,9(ξ)=H0+H1−b2c−−(b2−4ac)2ccotρ−(b2−4ac)ξ±−pq(b2−4ac)2ccscρ−(b2−4ac)ξ,$
(20)
$H1,10(ξ)=H0+H1−b2c+−(b2−4ac)2ctanρ−(b2−4ac)4ξ−−(b2−4ac)2ccotρ−(b2−4ac)4ξ,$
(21)

and

$ξ=xαα−vtαα.$
(22)

Case 2: For b2 − 4ac > 0 and c ≠ 0,

• Substituting Eq. (8) or Eq. (9) into Eq. (7), soliton solutions to the prey population size give

$H2,1(ξ)=H0+H−1−b2c−(b2−4ac)2ctanhρ(b2−4ac)2ξ,$
(23)
$H2,3(ξ)=H0+H−1−b2c−(b2−4ac)2ccothρ(b2−4ac)2ξ,$
(24)
$H2,4(ξ)=H0+H−1−b2c−(b2−4ac)2ctanhρ(b2−4ac)ξ±ıpq(b2−4ac)2csechρ(b2−4ac)ξ,$
(25)
$H2,5(ξ)=H0+H−1−b2c−(b2−4ac)2ccothρ(b2−4ac)ξ±pq(b2−4ac)2ccschρ(b2−4ac)ξ,$
(26)
$H2,6(ξ)=H0+H−1−b2c−−(b2−4ac)4ctanhρ(b2−4ac)4ξ−(b2−4ac)4ccothρ(b2−4ac)4ξ.$
(27)
• (ii)

Substituting Eq. (10) or Eq. (11) into Eq. (7), the obtained soliton solutions to the prey population size give

$H2,7(ξ)=H0+H1−b2c−(b2−4ac)2ctanhρ(b2−4ac)2ξ,$
(28)
$H2,8(ξ)=H0+H1−b2c−(b2−4ac)2ccothρ(b2−4ac)2ξ,$
(29)
$H2,9(ξ)=H0+H1−b2c−(b2−4ac)2ctanhρ(b2−4ac)ξ±ıpq(b2−4ac)2csechρ(b2−4ac)ξ,$
(30)
$H2,10(ξ)=H0+H1−b2c−(b2−4ac)2ccothρ(b2−4ac)ξ±pq(b2−4ac)2ccschρ(b2−4ac)ξ,$
(31)
$H2,11(ξ)=H0+H1−b2c−−(b2−4ac)4ctanhρ×(b2−4ac)4ξ−(b2−4ac)4ccothρ×(b2−4ac)4ξ,$
(32)

while

$ξ=xαα−vtαα.$

Case 3: For b = 0, ac > 0, it is obtained,

$H0=−2lnp2ac+β,H1=0,H−1=2a⁡lnp,v=2lnp2ac−β2−2lnp2ac+β,m=m,κ=−22lnp2ac−β−2lnp2ac+β,$
(33)
$H0=−2aclnp,H1=0,H−1=2a⁡lnp,v=124lnp2ac+β2−2aclnp,m=m,κ=−128lnp2ac−β−2aclnp,$
(34)
$H0=−2aclnp,H1=2c⁡lnp,H−1=0,v=−124lnp2ac+β2−2aclnp,m=m,κ=−128lnp2ac−β−2aclnp,$
(35)
$H0=−2lnp2ac+β,H1=2c⁡lnp,H−1=0,v=−2lnp2ac−β2−2lnp2ac+β,m=m,κ=−22lnp2ac−β−2lnp2ac+β.$
(36)

Consequently, the analytical survey soliton solutions of the prey population are given by the following:

• Plug Eq. (32) or Eq. (33) into Eq. (7), we set out the soliton solutions to the prey population size,

$H3,1(ξ)=H0+H−1actanρacξ,$
(37)
$H3,2(ξ)=H0+H−1−cσcotρacξ,$
(38)
$H3,3(ξ)=H0+H−1aσtanρ2acξ±pqacsecρ2acξ,$
(39)
$H3,4(ξ)=H0+H−1−accotρ2acξ±pqaccscρ2acξ,$
(40)
$H3,5(ξ)=H0+H−112actanρac2ξ−12accotρac2ξ.$
(41)
• (ii)

Using Eq. (34) or Eq. (35), we set out the soliton solutions to the prey population size,

$H3,6(ξ)=H0+H1actanρacξ,$
(42)
$H3,7(ξ)=H0−H1cσcotρacξ,$
(43)
$H3,8(ξ)=H0+H1aσtanρ2acξ±pqacsecρ2acξ,$
(44)
$H3,9(ξ)=H0+H1−accotρ2acξ±pqaccscρ2acξ,$
(45)
$H3,10(ξ)=H0+H112actanρac2ξ−12accotρac2ξ,$
(46)

with

$ξ=xαα−vtαα.$

Case 4:ac < 0 and b = 0 together with Eqs. (32)--(35), we unearth

• Use Eq. (32) or Eq. (33), we set out the soliton solutions of the prey population,

$H4,1(ξ)=H0+H−1−−actanhρ−acξ,$
(47)
$H4,2(ξ)=H0+H−1−−accothρ−acξ,$
(48)
$H4,3(ξ)=H0+H−1−−actanhρ2acξ±ı−pqacsechA2−acξ,$
(49)
$H4,4(ξ)=H0+H−1−−accothρ2−acξ±−pqaccschρ2−acξ,$
(50)
$H4,5(ξ)=H0+H−1−12−actanhρ−ac2ξ−12−accothρ−ac2ξ.$
(51)

Furthermore,

• (ii)

Employ Eq. (34) or Eq. (35), we set out the soliton solutions of the prey population,

$H4,6(ξ)=H0−H1−actanhρ−acξ,$
(52)
$H4,7(ξ)=H0−H1−accothρ−acξ,$
(53)
$H4,8(ξ)=H0+H1−−actanhρ2acξ±ı−pqacsechA2−acξ,$
(54)
$H4,9(ξ)=H0+H1−−accothρ2−acξ±−pqaccschρ2−acξ,$
(55)
$H4,10(ξ)=H0+H1−12−actanhρ−ac2ξ−12−accothρ−ac2ξ.$
(56)

Hence,

$ξ=xαα−vtαα.$

Case 5: For b = 0, a = −c, we obtain the following set of results:

$H0=2c⁡lnp,H1=0,H−1=2c⁡lnp,v=124lnp2c2−βlnpc,m=m,κ=148lnp2c2+β2lnpc,$
(57)
$H0=2lnp2c2+β,H1=0,H−1=2c⁡lnp,v=2lnp2c2+β2,m=m,κ=22lnp2c2+β,$
(58)
$H0=2c⁡lnp,H1=2c⁡lnp,H−1=0,v=4lnp2c2−β2⁡lnpc,m=m,κ=8lnp2c2+β24⁡lnpc,$
(59)
$H0=2lnp2c2+β,H1=2c⁡lnp,H−1=0,v=2lnp2c2+β2,m=m,κ=22lnp2c2+β.$
(60)

Thereafter,

• utilize Eq. (56) or Eq. (57), we set out the soliton solutions of the prey population,

$H5,1(ξ)=H0−H−1tanhρ(aξ),$
(61)
$H5,2(ξ)=H0−H−1cothρ(aξ),$
(62)
$H5,3(ξ)=H0+H−1−tanhρ(2aξ)±ıpqsechρ(2aξ),$
(63)
$H5,4(ξ)=H0+H−1−cothρ(2aξ)±pqcschρ(2aξ),$
(64)
$H5,5(ξ)=H0+H−1−12tanhρa2ξ+cothρa2ξ.$
(65)

Hence, with the help of

• (ii)

using Eq. (58) or Eq. (59), we set out the soliton solutions of the prey population,

$H5,6(ξ)=H0−H1⁡tanhρ(aξ),$
(66)
$H5,7(ξ)=H0−H1⁡cothρ(aξ),$
(67)
$H5,8(ξ)=H0+H1−tanhρ(2aξ)±ıpqsechρ(2aξ),$
(68)
$H5,9(ξ)=H0+H1−cothρ(2aξ)±pqcschρ(2aξ),$
(69)
$H5,10(ξ)=H0+H1−12tanhρa2ξ+cothρa2ξ.$
(70)

Case 6: For b = 0 a = c, the set of results is obtained,

$H0=−2lnp2c2+β,H1=0,H−1=2c⁡lnp,v=−−2lnp2c2+β2,m=m,κ=2−2lnp2c2+β,$
(71)
$H0=−2lnp2c2+β,H1=2c⁡lnp,H−1=0,v=−2lnp2c2+β2,m=m,κ=2−2lnp2c2+β.$
(72)
• Insert Eq. (70) into Eq. (7), we emphasize soliton solutions of the prey population,

$H6,1(ξ)=H0+H−1tanρ(aξ),$
(73)
$H6,2(ξ)=H0−H−1cotρ(aξ),$
(74)
$H6,3(ξ)=H0+H−1tanρ(2aξ)±pqsecρ(2aξ),$
(75)
$H6,4(ξ)=H0+H−1−cotρ(2aξ)±pqcscρ(2aξ),$
(76)
$H6,5(ξ)=H0+H−112tanρa2ξ−cotρa2ξ.$
(77)

Thereupon,

• plug Eq. (71) into Eq. (7), we emphasize soliton solutions of the prey population,

$H6,6(ξ)=H0+H1⁡tanρ(aξ),$
(78)
$H6,7(ξ)=H0−H1⁡cotρ(aξ),$
(79)
$H6,7(ξ)=H0+H1tanρ(2aξ)±pqsecρ(2aξ),$
(80)
$H6,8(ξ)=H0+H1−cotρ(2aξ)±pqcscρ(2aξ),$
(81)
$H6,8(ξ)=H0+H112tanρa2ξ−cotρa2ξ.$
(82)

Case 7: For b ≠ 0 and a = 0, it is unearthed

$H0=0,H1=2c⁡lnp,H−1=0,v=−lnp2b2−βlnpb,m=m,κ=−122lnp2b2+β2lnpb,$
(83)
$H0=2b⁡lnp,H1=2c⁡lnp,H−1=0,v=lnp2b2−βlnpb,m=m,κ=122lnp2b2+β2lnpb,$
(84)
$H0=1422⁡lnpb+22lnp2b2+4β,v=2lnp2b2+2lnpb2lnp2b2+4β+4β2⁡lnpb+22lnp2b2+4β,m=m,H1=2c⁡lnp,H−1=0,κ=22lnp2b2+2lnpb2lnp2b2+4β+4β2⁡lnpb+22lnp2b2+4β.$
(85)
• Connect Eqs. (82)-(84) into Eq. (7), we obtain soliton solutions of the prey population,

$H7,1(ξ)=H0+pbH1c(coshρ(bξ)−sinhρ(bξ)−p),$
(86)
$H7,1(ξ)=H0−bH1(sinhρ(bξ)+coshρ(bξ))c(coshρ(bξ)−sinhρ(bξ)+q).$
(87)

Case 8: For b2 = 4ac, it is revealed,

$H0=ac2lnp+β,v=4ac3/2lnp3−4acaclnp3−β3/22−4acβlnp2acβ2lnp+β,m=m,H1=0,H−1=2a⁡lnp,κ=2ac3/22lnp3−lnp3acc2a+2ac2βlnp+β3/22acβ2lnp+β,$
(88)
$H0=ac2lnp+β,v=−4ac3/2lnp3−4acaclnp3−β3/22−4acβlnp2acβ2lnp+β,m=m,H1=2c⁡lnp,H−1=0,κ=2ac3/22lnp3−lnp3acc2a+2ac2βlnp+β3/22acβ2lnp+β.$
(89)
• Substitute Eq. (87) into Eq. (7), it is carried out soliton solutions of the prey population,

$H8,1(ξ)=H0−H−1b2ξ⁡ln(ρ)2a(bξ⁡ln(ρ)+2).$
(90)

Therewith,

• (ii)

connect Eq. (88) into Eq. (7), it is pick up soliton solutions of the prey population,

$H8,2(ξ)=H0−2H1a(bξ⁡ln(ρ)+2)b2ξ⁡ln(ρ),$
(91)

where

$ξ=xαα−vtαα.$

The generalized hyperbolic and triangular function are given in Refs. 21 and 22.

We demonstrate our results in Figs. 13. Figures 1 and 2 show the behavior of the prey population with the effect of the fractional derivative order. By the chosen appropriate parameters of the direct extended algebraic method associated with the PP parameters (β), the dark soliton solution of the PP population size is affected for certain values of α [see 1(A2), 1(A3), and 1(A4) in Figs. 1 and 2]. Meanwhile, taking the imaginary part of Eq. (29), we depict the bright soliton solutions associated with the prey population size. It is also set out the effect of the fractional derivative. For the negative values of the velocity of the soliton, the wave move from right to left (see Figs. 4 and 5). However, the spatiotemporal plot 3D (Fig. 6) is depicted for different values of α. We emphasize on the behavior of the prey population under the control of the fractional derivative order. The obtained results have set out some new cases of the traveling wave compared to Refs. 1 and 4. For example, Eqs. (14)(16), (19)(21), (24)(26), (29)(31), (42)(45), and (48)(50) were not obtained in Ref. 1. These results could probably in the future explain the coexistence of interfering biological species such as PP. On the other hand, the NEAM can be used like the synthesis of the Kather method and the exp[−φ(ξ)]-expansion method.

FIG. 1.

Spatiotemporal plot of the kink-like soliton of |H2.7(x, t)|2 under the effect of the fractional derivative order (A1) α1 = 1, (A2) α1 = 0.9, (A3) α1 = 0.85, and (A4) α1 = 0.8 for β2 = 0.0015, b = 2.5, a = −0.4, c = 0.072, v = −1.0072, p = q = 1, ρ = e.

FIG. 1.

Spatiotemporal plot of the kink-like soliton of |H2.7(x, t)|2 under the effect of the fractional derivative order (A1) α1 = 1, (A2) α1 = 0.9, (A3) α1 = 0.85, and (A4) α1 = 0.8 for β2 = 0.0015, b = 2.5, a = −0.4, c = 0.072, v = −1.0072, p = q = 1, ρ = e.

Close modal
FIG. 2.

Plot evolution 2D of the kink-like soliton of |H2.7(x, t)|2 under the effect of the fractional derivative order (α = 0.95) and the velocity of the soliton (A5) v = −1.1263, β = 0.100 15, (A6) v = −1.1662, β = 0.300 15, (A7) v = −1.1766, β = 0.400 15, and (A8) v = −1.2061, β0.500 15 for b = 2.5, a = −0.4, c = 0.072, p = q = 1, ρ = e.

FIG. 2.

Plot evolution 2D of the kink-like soliton of |H2.7(x, t)|2 under the effect of the fractional derivative order (α = 0.95) and the velocity of the soliton (A5) v = −1.1263, β = 0.100 15, (A6) v = −1.1662, β = 0.300 15, (A7) v = −1.1766, β = 0.400 15, and (A8) v = −1.2061, β0.500 15 for b = 2.5, a = −0.4, c = 0.072, p = q = 1, ρ = e.

Close modal
FIG. 3.

Contour plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] under the effect of the fractional derivative order (A9) α = 1, (A10) α = 0.98, (A11) α = 0.9, and (A12) α = 0.85 for v = −0.1765, b = 0.75, a = −0.0074, c = −0.0002, β = −0.700 001 5, p = q = 1, ρ = e.

FIG. 3.

Contour plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] under the effect of the fractional derivative order (A9) α = 1, (A10) α = 0.98, (A11) α = 0.9, and (A12) α = 0.85 for v = −0.1765, b = 0.75, a = −0.0074, c = −0.0002, β = −0.700 001 5, p = q = 1, ρ = e.

Close modal
FIG. 4.

Plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (α = 0.98) at (D1) t = 0 ms, (D2) t = 20 ms, (D3) t = 40 ms, (D4) t = 60 ms, and (D5) t = 80 ms for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

FIG. 4.

Plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (α = 0.98) at (D1) t = 0 ms, (D2) t = 20 ms, (D3) t = 40 ms, (D4) t = 60 ms, and (D5) t = 80 ms for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

Close modal
FIG. 5.

Plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (α = 0.75) at (D6) t = 0 ms, (D7) t = 20 ms, (D8) t = 40 ms, (D9) t = 60 ms, and (D10) t = 80 ms for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

FIG. 5.

Plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (α = 0.75) at (D6) t = 0 ms, (D7) t = 20 ms, (D8) t = 40 ms, (D9) t = 60 ms, and (D10) t = 80 ms for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

Close modal
FIG. 6.

Spatiotemporal plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (B1) α = 0.7, (B2) α = 0.75, (B3) α = 0.8, and (B4) α = 0.85 for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

FIG. 6.

Spatiotemporal plot evolution of the bright soliton $|ImH2.9(x,t)|2$ [Eq. (29)] with the effect of the fractional derivative order (B1) α = 0.7, (B2) α = 0.75, (B3) α = 0.8, and (B4) α = 0.85 for v = −0.6364, b = 0.55, a = −0.0074, c = −0.0002, β = −0.200 001 5, p = q = 1, ρ = e.

Close modal

In this work, we investigated the analytical survey of the fractional derivative mathematical model of the PP system. To reach the main goal, we use the famous powerful mathematic method, namely, the NEAM. The behavior of the effect of the fractional order derivative (α) on the bright and dark soliton solutions has been obtained, and their profiles have been plotted in 2D and 3D. In addition, diverse solutions have also been obtained, such as trigonometric function solutions, singular soliton solutions, bright soliton dark soliton, combined trigonometric solutions, and complex solutions. Some of the obtained results are new in the bio-mathematics field and can be useful to better explain the effects of anti-predator behavior in the PP system. The next work will focus on the numerical simulation of the obtained results to better emphasize the phenomenon of the PP interference.

The data that support the findings of this study are available within the article.

This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, and 11601485).

1.
M. M. A.
Khater
,
C.
Park
, and
D.
Lu
, “
Two effective computational schemes for a prototype of an excitable system
,”
10
,
105120
(
2020
).
2.
J. P.
Wagner
and
P. R.
Schreiner
, “
London dispersion in molecular chemistry—Reconsidering steric effects
,”
Angew. Chem., Int. Ed.
54
,
12274
(
2015
).
3.
G.
Kaplan
and
G.
Menzio
, “
The morphology of price dispersion
,”
Int. Econ. Rev.
56
,
1165
(
2015
).
4.
B.
Dubey
, “
A Prey-Predator model with a reserved area
,”
Nonlinear Anal.: Modell. Control
12
,
479
(
2007
).
5.
H.
,
S. M.
Mirhosseini-Alizamini
,
M.
Eslami
,
M.
,
M.
, and
S.
Abbagari
, “
New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation
,”
Optik
172
,
545
(
2018
).
6.
P. T. M.
Serge
,
S.
Abbagari
,
K. K.
Victor
, and
B. B.
Thomas
, “
Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear Schrödinger system
,”
Nonlinear Dyn.
93
,
373
(
2018
).
7.
H.
Alphonse
,
M.
Inc
,
D. Y.
Serge
, and
B.
Acay
, “
The discrete tanh method for solving the nonlinear differential-difference equations
,”
Int. J. Mod. Phys. B
34
,
2050177
(
2020
).
8.
H.
Alphonse
,
S.
Abbagari
,
G.
Betchewe
,
M.
Inc
,
D. Y.
Serge
,
T. C.
Kofane
,
B.
Dumitru
, and
A.
Bandar
, “
Exact optical solitons of the perturbed nonlinear Schrödinger–Hirota equation with Kerr law nonlinearity in nonlinear fiber optics
,”
Open Phys.
18
,
526
(
2020
).
9.
H.
Alphonse
,
S.
Jamilu
,
H.
Zakia
, and
S. Y.
Doka
, “
Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line
,”
Phys. Scr.
95
,
045203
(
2020
).
10.
L.
Penggang
,
Y.
Rongcao
, and
X.
Zhiyong
, “
Gray solitary-wave solutions in nonlinear negative-index materials
,”
Phys. Rev. E
82
,
046603
(
2010
).
11.
C.
Shihua
,
B.
Fabio
,
M.
Soto-Crespo Jose
,
L.
Yi
, and
G.
Philippe
, “
Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations
,”
Phys. Rev. E
93
,
062202
(
2016
).
12.
V. K.
Sharma
, “
Chirped soliton-like solutions of generalized nonlinear Schrödinger equation for pulse propagation in negative index material embedded into a Kerr medium
,”
J. Phys.
90
,
1271
(
2016
).
13.
Alka
,
G.
Amit
,
G.
Rama
,
C. N.
Kumar
, and
S. R.
Thokala
, “
Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift
,”
Phys. Rev. A
84
,
063830
(
2011
).
14.
M. E.
Elsayed
and
E. M. A.
Mohamed
, “
Application of newly proposed sub-ODE method to locate chirped optical solutions to Triki-Biswas equation
,”
Optik
207
,
164360
(
2020
).
15.
H.
Jingsong
,
X.
Shuwei
, and
P.
Kuppuswamy
, “
Rogue waves of the Fokas–Lenells equation
,”
J. Phys. Soc. Jpn.
81
,
124007
(
2012
).
16.
H.
Alphonse
,
B. H.
Malwe
,
S.
Nestor
,
J.
Dikwa
,
J.
Mibaile
,
B.
Gambo
,
S. Y.
Doka
,
T. C.
Kofane
,
K.
Salam
,
A.
Biwas
, and
B.
Milivoj
, “
Optical solitons for higher-order nonlinear Schrödingers equation with three exotic integration architectures
,”
Optik
179
,
861
(
2019
).
17.
M.
Xuemin
,
Y.
Rongcao
,
T.
Jinping
,
X.
Wenrui
, and
J. M.
Christian
, “
Exact dipole solitary wave solution in metamaterials with higher-order dispersion
,”
J. Mod. Opt.
63
,
S44
(
2016
).
18.
S.
Michael
,
S. S.
Maxim
,
A.
Neset
,
Y. P.
Evgeni
,
D.
Giuseppe
,
M.
,
J. B.
Mark
, and
M. Z.
Aleksei
, “
Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: Application to negative index materials
,”
Phys. Rev. Lett.
95
,
013902
(
2005
).
19.
A.
Korkmaz
,
E.
Hepson
,
K. O.
Hosseini
,
H.
, and
M.
Eslami
, “
Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class
,”
J. King Saud Univ., Sci.
32
,
567
(
2020
).
20.
S.
,
B.
Depelair
,
B.
Gambo
, and
Y. D.
Serge
, “
Miscellaneous new traveling waves in metamaterials by means of the new extended direct algebraic method
,”
Optik
197
,
163108
(
2019
).
21.
S.
Abbagari
,
K.
Alper
,
R.
,
T. M.
Serge Paulin
, and
B.
Ahmet
, “
Soliton solutions in different classes for the Kaup-Newell model equation
,”
Mod. Phys. Lett. B
34
,
2050038
(
2020
).
22.
A.
Houwe
,
M.
Inc
,
S. Y.
Doka
,
M. A.
Akinlar
, and
D.
Baleanu
, “
Chirped solitons in negative index materials generated by Kerr nonlinearity
,”
Results Phys.
17
,
103097
(
2020
).
23.
N. A.
Kudryashov
, “
One method for finding exact solutions of nonlinear differential equations
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2248
(
2012
).
24.
E. M. E.
Zayed
and
A. H.
Arnous
, “
DNA dynamics studied using the homogenous balance method
,”
Chin. Phys. Lett.
29
,
080203
(
2012
).
25.
A.
Houwe
,
S.
Abbagari
,
Y.
Salathiel
,
M.
Inc
,
S. Y.
Doka
,
K.
Timoléon Crépin
, and
S. Y.
Doka
, “
Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations
,”
Results Phys.
17
,
103127
(
2020
).
26.
N. A.
Kudryashov
,
P. N.
Ryabov
,
T. E.
Fedyanin
, and
A. A.
Kutukov
, “
Analytical and numerical solutions of the generalized dispersive Swift-Hohenberg equation
,”
Phys. Lett. A
377
,
753
(
2013
).
27.
N. A.
Kudryashov
, “
Quasi-exact solutions of the dissipative Kuramoto-Sivashinsky equation
,”
Appl. Math. Comput.
219
,
9245
(
2013
).
28.
P. N.
Ryabov
,
D. I.
Sinelshchikov
, and
M. B.
Kochanov
, “
Exact solutions of the Kudryashov-Sinelshchikov equation using the multiple (G′/G)-expansion method
,”
Appl. Math. Comput.
218
,
3965
(
2011
).
29.
A.
Houwe
,
S.
Abbagari
,
M.
Inc
,
G.
Betchewe
,
S. Y.
Doka
, and
K.
Timoléon Crépin
, “
Chirped solitons in discrete electrical transmission line
,”
Results Phys.
18
,
103188
(
2020
).
30.
M.
Wang
,
X.
Li
, and
J.
Zhang
, “
The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
,”
Phys. Lett. A
372
,
417
(
2008
).
31.
A.
Ismail
and
O.
Turgut
, “
Analytic study on two nonlinear evolution equations by using the (G′/G)-expansion method
,”
Appl. Math. Comput.
209
,
425
(
2009
).
32.
S.
Nestor
,
G.
Betchewe Nestor
,
M.
Inc
, and
S. Y.
Doka
, “
Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations
,”
Eur. Phys. J. Plus
135
,
380
(
2020
).
33.
A.
Canabarro
,
B.
Santos
,
B.
de Lima Bernardo
,
A. L.
Moura
,
W. C.
Soares
,
E.
de Lima
,
I.
Gléria
, and
M. L.
Lyra
, “
Modulation instability in noninstantaneous Kerr media with walk-off and cross-phase modulation for mixed group velocity dispersion regimes
,”
Phys. Rev. A
93
,
023834
(
2016
).
34.
S.
Nestor
,
S.
Abbagari
,
A.
Houwe
,
I.
Mustafa
,
B.
Gambo
, and
S. Y.
Doka
, “
Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers
,”
Commun. Theor. Phys.
72
,
065501
(
2020
).
35.
S.
Nestor
,
A.
Houwe
,
H.
,
A.
Bekir
,
G.
Betchewe
, and
S. Y.
Doka
, “
New solitary waves for the Klein-Gordon-Zakharov equations
,”
Mod. Phys. Lett. B
34
,
2050246
(
2020
).
36.
S.
Nestor
,
A.
Houwe
,
G.
Betchewe
,
M.
Inc
, and
S. Y.
Doka
, “
A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrodinger equation
,”
Phys. Scr.
95
,
085108
(
2020
).
37.
S.
Nestor
,
G.
Betchewe
,
H.
,
A.
Bekir
, and
S. Y.
Doka
, “
Exact optical solitons to the perturbed nonlinear equation with Schrödinger dual-power law of nonlinearity
,”
Opt. Quantum Electron.
52
,
318
(
2020
).
38.
H.
,
A.
Souleymanou
,
A.
Korkmaz
,
M. M. A.
Khater
,
S. P.
Takougoum Mukam
, and
V. K.
Kuetche
, “
New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator
,”
Mod. Phys. Lett. B
34
,
2050309
(
2020
).
39.
A.
Souleymanou
,
K. K.
Ali
,
H.
,
M.
Eslami
,
M.
, and
A.
Korkmaz
, “
The propagation of waves in thin-film ferroelectric materials
,”
Pramana-J. Phys.
93
,
27
(
2019
).
40.
A.
Souleymanou
,
V. K.
Kuetche
,
T. B.
Bouetou
, and
T. C.
Kofane
, “
Scattering behavior of waveguide channels of a new coupled integrable dispersionless system
,”
Chin. Phys. Lett.
28
,
120501
(
2011
).
41.
A.
Souleymanou
,
V. K.
Kuetche
,
T. B.
Bouetou
, and
T. C.
Kofane
, “
Traveling wave-guide channels of a new coupled integrable dispersionless system
,”
Commun. Theor. Phys.
57
,
10
(
2012
).
42.
A.
Souleymanou
,
S.
Youssoufa
,
H. T.
Tchokouansi
,
V. K.
Kuetche
,
T. B.
Bouetou
, and
T. C.
Kofane
, “
N-rotating loop-soliton solution of the coupled integrable dispersionless equation
,”
J. Appl. Math. Phys.
5
,
1370
(
2017
).
43.
A.
Souleymanou
,
S. P. T.
Mukam
,
A.
Houwe
,
V. K.
Kuetche
,
M.
Inc
,
S. Y.
Doka
,
B.
Almohsen
, and
T. B.
Bouetou
, “
Controllable rational solutions in nonlinear optics fibers
,”
Eur. Phys. J. Plus
135
,
633
(
2020
).
44.
H.
Yépez-Martínez
,
H.
,
A.
Souleymanou
,
S. P. T.
Mukam
,
M.
Eslami
,
V. K.
Kuetche
, and
A.
Bekir
, “
The extended modified method applied to optical solitons solutions in birefringent fibers with weak nonlocal nonlinearity and four wave mixing
,”
Chin. J. Phys.
58
,
137
(
2019
).
45.
S. P. T.
Mukam
,
A.
Souleymanou
,
V. K.
Kuetche
, and
T. B.
Bouetou
, “
Rogue wave dynamics in barotropic relaxing media
,”
Pramana-J. Phys.
91
,
56
(
2018
).
46.
M.
Inc
,
A.
Akgül
, and
F.
Geng
, “
Reproducing kernel Hilbert space method for solving Bratu’s problem
,”
Bull. Malays. Math. Sci. Soc.
38
,
271
(
2015
).
47.
A.
Akgül
,
A.
Kilicman
, and
M.
Inc
, “
Improved $(G′G)$-expansion method for the space and time fractional foam drainage and KdV equations
,”
Abstr. Appl. Anal.
2013
,
414353
.
48.
A.
Akgül
,
M.
Inc
,
E.
Karatas
, and
D.
Baleanu
, “
Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique
,”
2015
,
220
.
49.
A.
Akgül
, “
A novel method for a fractional derivative with non-local and non-singular kernel
,”
Chaos, Solitons Fractals
114
,
478
(
2018
).
50.
M.
Inc
,
A.
Akgül
, and
F.
Geng
, “
Approximate solutions for MHD squeezing fluid flow by a novel method
,”
Boundary Value Probl.
18
,
1
(
2014
).
51.
D.
Baleanu
,
A.
Fernandez
, and
A.
Akgül
, “
On a fractional operator combining proportional and classical differintegrals
,”
Mathematics
8
,
360
(
2020
).