In this work, the nonlinear Schrödinger’s equation is studied for birefringent fibers incorporating four-wave mixing. The improved tanϕ(ξ)2-expansion, first integral, and GG2-expansion methods are used to extract a novel class of optical solitons in the quadratic-cubic nonlinear medium. The extracted solutions are dark, periodic, singular, and dark-singular, along with other soliton solutions. These solutions are listed with their respective existence criteria. The recommended computational methods here are uncomplicated, outspoken, and consistent and minimize the computational work size, which give it a wide range of applicability. A detailed comparison with the results that already exist is also presented.

Optical solitons are a valuable accretion in the field of fiber optic communications.1–3 The nonlinear Schrödinger’s equation (NLSE) is the governing model that describes the propagation of optical solitons with different forms of nonlinear media.4–14 The nonlinear media based on the Kerr law have been extensively studied through various research papers.12–15 Nowadays, a growing interest to study optical solitons in the non-Kerr law medium can be observed. There are various forms of nonlinearities that are studied in the context of the non-Kerr law, i.e., polynomial law, parabolic law, power law, dual-power law, saturable law, triple power law, among others.16–20 For more than a couple of decades, the study of optical solitons has been carried out with quadratic-cubic (QC) nonlinearity. This form of nonlinearity first appeared during 1994.21 Later, interest was rekindled with this model during 2011.22 There are several results with a variety of mathematical methods that are reported.23–33 These include the traveling wave hypothesis, semi-inverse variational principle, method of undetermined coefficients, conservation laws, the unified method and its generalized technique, and various other aspects.34–48 

In this study, in the presence of birefringent fibers and the four-wave mixing effect, we consider the NLSE with quadratic-cubic nonlinearity (4WM). It is likely that birefringence exists in an optical waveguide. By splitting pulses into two, this phenomenon steers toward differential party latency. Birefringence implies the mutual reaction to this pause.

Refractive indices caused by orthogonally polarized materials vary significantly in the case of fiber birefringence in optical modes. Nonlinear structures are significantly affected by this refractive index, which plays a significant role in the field of fiber optics. If Bragg gratings are rendered within the center of polarization-maintaining fibers, their effects should be included. It is worthwhile extending the coupled-mode principle to account for fiber birefringence.49–51 In this case, a series of four coupled equations comprising forward and backward propagating waves explain the evolution of two orthogonally polarized elements, which makes the topic very complicated. A major class of nonlinear phenomena of functional implementation, such as optical logic gates, is given by this ramification. To extract soliton solutions to the models, multiple integration schemes are available.17,18,52–54 The first integral approach is an exceptionally desirable and stable method for scrutinizing reliable evolution equation solutions since it copes fairly well with both integrable and non-integrable equations. Feng55 introduced this method by solving the Burgers KdV equation. This approach is fundamental to the ring theory of commutative algebra and is used all over the world.56,57

The GG2-expansion method58 is a novel approach for calculating the soliton solutions of single and combined nonlinear equations that exist in different fields of physics, fluid mechanics, problems of wave propagation, population dynamics, etc. Owing to its easy thinking and suitability, it has become very popular. In the form of hyperbolic, trigonometric, and rational functions, the solutions obtained using the approach proposed can be expressed.

The present model, however, has been already studied in the past with the extended trial function method,59 extended Jacobi’s elliptic function expansion method,60 (G′/G)-expansion method,61 and F-expansion method.62 The current paper will apply the improved tanϕ(ξ)2-expansion method,63 first integral method,55 and GG2-expansion method58 to extract a novel class of soliton solutions to the model. Dark, singular, periodic, dark-singular, and some other solitons are the part of this novel class. After a quick intro to the model, the details are enumerated in the rest of the paper.

The governing equation for the propagation of solitons through optical fibers with QC nonlinearity is given by the following dimensionless form of the NLSE:38 

iψt+αψxx+(β1|ψ|+β2|ψ|2)ψ=0.
(1)

In Eq. (1), the independent variables are t and x that represent temporal and spatial variables, respectively. The dependent variable ψ(x, t) gives the complex valued wave profile. The coefficient of the real-valued constant α is group velocity dispersion (GVD). The two nonlinear terms are with coefficients β1 and β2, which are both real-valued constants. This leads to the formulation of the NLSE with QC nonlinearity. With birefringence, Eq. (1) splits into two components as follows:59 

irt+α1rxx+β1r|r|2+|s|2+rs*+r*s+μ1|r|2+γ1|s|2r+τ1s2r*=0,
(2)
ist+α2sxx+β2s|s|2+|r|2+sr*+s*r+μ2|s|2+γ2|r|2s+τ2r2s*=0.
(3)

In Eqs. (2) and (3), αj, for j = 1or2, gives GVD for the two components. The coefficients of βj, the first two terms in the radical, account for self-phase modulation (SPM) and cross-phase modulation (XPM) terms, while the third and fourth terms stem from 4WM due to quadratic nonlinearity. Next, for the cubic nonlinear term, μj and νj are from SPM and XPM, respectively, while τj gives the effect of 4WM. With this complete picture to the model, the rest of the paper explores the mathematical scheme to enlist the solution spectrum.

In order to solve Eqs. (2) and (3), we first adopt the following transformations:

r(x,t)=U1(ξ)eiϕ,
(4)
s(x,t)=U2(ξ)eiϕ,
(5)

where

ξ=xvt,
(6)

while the phase component ϕ is given as

ϕ=κx+ωt+θ.
(7)

Here, v is the velocity of the soliton, κ refers to the frequency of the solitons in each of the two components while θ is the phase constant and ω is the soliton wave number. Substituting Eqs. (4) and (5) into Eqs. (2) and (3) and splitting into real and imaginary parts, respectively, yield

αlUl(αlκ2+ω)Ul+βlUl2+βlUlUl̄+μlUl3+(γl+τl)UlUl̄2=0,
(8)
(2αlκ+v)Ul=0,
(9)

for l = 1, 2 and l̄=3l. From Eq. (9), the soliton speed is

v=2αlκ.
(10)

On comparing both soliton speed expressions, we get

αl=α2=α.
(11)

Thus, the speed of the solitons becomes

v=2ακ.
(12)

Therefore, Eqs. (2) and (3) can be rewritten as

irt+αrxx+β1r|r|2+|s|2+rs*+r*s+μ1|r|2+γ1|s|2r+τ1s2r*=0,ist+αsxx+β1s|s|2+|r|2+sr*+s*r+μ1|s|2+γ1|r|2s+τ1r2s*=0.
(13)

In this case, the real part (8) changes to

αUl(ακ2+ω)Ul+βlUl2+βlUlUl̄+μlUl3+(γl+τl)UlUl̄2=0.
(14)

Next, using the balancing principle, a relationship is acquired, which is given by

Ul=Ul̄.
(15)

As a consequence, Eq. (16) turns into

αUl(ακ2+ω)Ul+2βlUl2+(μl+γl+τl)Ul3=0.
(16)

This section deals with the integration of Eqs. (2) and (3) by the aid of a mathematical tool called the improved tanϕ(ξ)2-expansion method.63 Suppose that Eq. (16) has a solution in terms of the tanϕ(ξ)2 function,

U(ξ)=k=0mAkp+tanϕ(ξ)2k+k=1mBkp+tanϕ(ξ)2k,
(17)

where Ak and Bk are constants to be determined, such that Am ≠ 0, Bm ≠ 0, and ϕ(ξ) satisfies the following differential equation:

ϕ(ξ)=Esin(ϕ(ξ))+Fcos(ϕ(ξ))+G.
(18)

Balancing U″ and U3 in Eq. (16), yields m = 1. Hence, Eq. (17) along with p = 0 takes the following form:

U(ξ)=A0+A1tanϕ(ξ)2+B1tanϕ(ξ)21.
(19)

Here, the objective is to find the values of A0, A1, and B1. In order to find these values, Eq. (19) is substituted into Eq. (16) and all the coefficients of tanϕ2n are compared, where n = −3, −2, −1, 0, 1, 2, and 3 with zero providing the following set of algebraic equations:

μlA13+τlA13αFA1G+γlA13+12αA1G2+12F2αA1=0,
(20)
3γlA0A12+32αGA1E+3μlA0A12+3τlA0A12+2βlA1232αFA1E=0,
(21)
4βlA0A112F2αA1+3γlA02A1+3τlA02A1+3μlA02A1+12αA1G2+3τlA12B1+αE2A1+3μlA12B1ωA1ακ2A1+3γlA12B1=0,
(22)
6γlA0A1B112αEB1F+12αEB1G+12αFA1E+12αGA1E+μlA03+4βlA1B1+γlA03+2βlA02+τlA03ακ2A0+6μlA0A1B1+6τlA0A1B1ωA0=0,
(23)
4βlA0B1ωB1+αE2B1+12αB1G212αB1F2+3γlA1B12+3γlA02B1+3τlA02B1+3μlA02B1+3μlA1B12ακ2B1+3τlA1B12=0,
(24)
32αEB1G+3τlA0B12+2βlB12+3γlA0B12+32αEB1F+3μlA0B12=0,
(25)
12αB1F2+12αB1G2+γlB13+τlB13+μlB13+αFB1G=0.
(26)

On solving the above-mentioned system of algebraic equations with the help of Maple, we get the subsequent cases for values of A0, A1, B1, α, and ω.

Case 1:

A0=43βlμl+γl+τl,A1=23G+FβlEμl+γl+τl,B1=23G+FβlEμl+γl+τl,α=89βl2μl+γl+τlE2,ω=89E2G2+F2κ2βl2μl+γl+τlE2.
(27)

Substituting the above-mentioned values in Eq. (19) and using the relation in Eq. (18) yield the following soliton solutions for systems (2) and (3).

When E2 + F2G2 = −M2 < 0 and FG ≠ 0, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)1+MEtanM2(x+2ακt+C)+(F+G)(FG)E2MEtan(M2(x+2ακt+C))×eiκx+89M2+κ2βl2μl+γl+τlE2t+θ,
(28)
s(x,t)=2β23(μ2+γ2+τ2)1+MEtanM2(x+2ακt+C)+(F+G)(FG)E2MEtan(M2(x+2ακt+C))×eiκx+89M2+κ2βl2μl+γl+τlE2t+θ.
(29)

When E2 + F2G2 = R2 > 0 and FG ≠ 0, then the subsequent dark-singular soliton solutions are obtained,

r(x,t)=2β13(μ1γ1+τ1)1+REtanhR2(x+2ακt+C)+(F+G)(FG)E2+REtanh(R2(x+2ακt+C))×eiκx89R2κ2βl2μl+γl+τlE2t+θ,
(30)
s(x,t)=2β23(μ2+γ2+τ2)1REtanhR2(x+2ακt+C)+(F+G)(FG)E2+ERtanhR2(x+2ακt+C)×eiκx89R2κ2βl2μl+γl+τlE2t+θ.
(31)

When E2 + F2G2 > 0, F ≠ 0, and G = 0, then the subsequent dark-singular soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)1F2+E2E×tanhF2+E22(x+2ακt+C)+F2E1E+F2+E2tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2μl+γl+τlE2t+θ,
(32)
s(x,t)=2β23(μ2+γ2+τ2)1F2+E2E×tanhF2+E22(x+2ακt+C)+F2E1E+F2+E2tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2μl+γl+τlE2t+θ.
(33)

When E2 + F2G2 < 0, G ≠ 0, and F = 0, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)1+G2E2E×tanG2E22(x+2ακt+C)+G2E×1EG2E2tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2μl+γl+τlE2t+θ,
(34)
s(x,t)=2β23(μ2+γ2+τ2)1+G2E2E×tanG2E22(x+2ακt+C)+×G2E1EG2E2tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2μl+γl+τlE2t+θ.
(35)

When E2 + F2 = G2, then the following rational soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)2E(x+2ακt+C)+2E(x+2ακt+C)E(x+2ακt+C)E(x+2ακt+C)+2eiκx+89κ2βl2μl+γl+τlE2t+θ,
(36)
s(x,t)=2β23(μ2+γ2+τ2)2E(x+2ακt+C)+2E(x+2ακt+C)E(x+2ακt+C)E(x+2ακt+C)+2eiκx+89κ2βl2μl+γl+τlE2t+θ.
(37)

When E = F = G = kE, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)1+1ekE(x+2ακt+C)1×eiκx+89κ2βl2μl+γl+τlk2E2t+θ,
(38)
s(x,t)=4β23(μ2+γ2+τ2)1+1ekE(x+2ακt+C)1×eiκx+89κ2βl2μl+γl+τlk2E2t+θ.
(39)

When E = G = kE and F = −kE, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)1+ekE(x+2ακt+C)1ekE(x+2ακt+C)×eiκx+89κ2βl2μl+γl+τlk2E2t+θ,
(40)
s(x,t)=4β23(μ2+γ2+τ2)1+ekE(x+2ακt+C)1ekE(x+2ακt+C)×eiκx+89κ2βl2μl+γl+τlk2E2t+θ.
(41)

When G = E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)×2+(FE)E(E+F)eF(x+2ακt+C)1(EF)eF(x+2ακt+C)1(F+E)E(EF)eF(x+2ακt+C)1(E+F)eF(x+2ακt+C)1×eiκx89F2κ2βl2μl+γl+τlE2t+θ,
(42)
s(x,t)=2β23(μ2+γ2+τ2)×2+(FE)E(E+F)eF(x+2ακt+C)1(EF)eF(x+2ακt+C)1(F+E)E(EF)eF(x+2ακt+C)1(E+F)eF(x+2ακt+C)1×eiκx89F2κ2βl2μl+γl+τlE2t+θ.
(43)

When G = −E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)×2(FE)EeF(x+2ακt+C)+FEeF(x+2ακt+C)+FE+(F+E)EeF(x+2ακt+C)+FEeF(x+2ακt+C)+FE×eiκx89F2κ2βl2μl+γl+τlE2t+θ,
(44)
s(x,t)=2β23(μ2+γ2+τ2)×2(FE)EeF(x+2ακt+C)+FEeF(x+2ακt+C)+FE+(F+E)EeF(x+2ακt+C)+FEeF(x+2ακt+C)+FE×eiκx89F2κ2βl2μl+γl+τlE2t+θ.
(45)

When F = −G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)1GeE(x+2ακt+C)ekE(x+2ακt+C)1×eiκx89E2κ2βl2μl+γl+τlE2t+θ,
(46)
s(x,t)=4β23(μ2+γ2+τ2)1GeE(x+2ακt+C)ekE(x+2ακt+C)1×eiκx89E2κ2βl2μl+γl+τlE2t+θ.
(47)

When F = 0 and E = G, then the subsequent rational soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)2G(x+2ακt+C)+2G(x+2ακt+C)G(x+2ακt+C)G(x+2ακt+C)+2eiκx+89κ2βl2μl+γl+τlG2t+θ,
(48)
s(x,t)=2β23(μ2+γ2+τ2)2G(x+2ακt+C)+2G(x+2ακt+C)G(x+2ακt+C)G(x+2ακt+C)+2eiκx+89κ2βl2μl+γl+τlG2t+θ.
(49)

When F = G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)1+GeE(x+2ακt+C)F×eiκx89E2κ2βl2μl+γl+τlE2t+θ,
(50)
s(x,t)=4β23(μ2+γ2+τ2)1+GeE(x+2ακt+C)F×eiκx89E2κ2βl2μl+γl+τlE2t+θ.
(51)

Case 2:

A0=23F2+E2G2EF2+E2G2βl(F2+E2G2)(μl+γl+τl),B1=23G+FβlF2+E2G2μl+γl+τl,A1=0,α=89βl2(F2+E2G2)μl+γl+τl,ω=89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τl.
(52)

Substituting the above-mentioned values in Eq. (19) and using the relation in Eq. (18) yield the following soliton solutions for systems (2) and (3).

When E2 + F2G2 < 0 and FG ≠ 0, then the following singular periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)F2+E2G2EF2+E2G2(F2+E2G2)(F2G2)F2+E2G2×1EG2F2E2tanG2F2E22(x+2ακt+C)eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ,
(53)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2G2EF2+E2G2(F2+E2G2)(F2G2)F2+E2G2×1EG2F2E2tanG2F2E22(x+2ακt+C)eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ.
(54)

When E2 + F2G2 > 0 and FG ≠ 0, then the subsequent singular soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)F2+E2G2EF2+E2G2(F2+E2G2)(F2G2)F2+E2G2×1E+F2+E2G2tanhF2+E2G22(x+2ακt+C)eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ,
(55)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2G2EF2+E2G2(F2+E2G2)(F2G2)F2+E2G2×1E+F2+E2G2tanhF2+E2G22(x+2ακt+C)eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ.
(56)

When E2 + F2G2 > 0, F ≠ 0, and G = 0, then the subsequent singular soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)F2+E2EF2+E2(F2+E2)(F2)F2+E21E+F2+E2tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2(F2+E2)μl+γl+τlt+θ,
(57)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2EF2+E2(F2+E2)(F2)F2+E21E+F2+E2tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2(F2+E2)μl+γl+τlt+θ.
(58)

When E2 + F2G2 < 0, G ≠ 0, and F = 0, then the following singular periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)E2G2EE2G2(E2G2)+(G2)E2G21EG2E2tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2(E2G2)μl+γl+τlt+θ,
(59)
s(x,t)=2β23(μ2+γ2+τ2)E2G2EE2G2(E2G2)+(G2)E2G21EG2E2tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2(E2G2)μl+γl+τlt+θ.
(60)

When E2 + F2G2 > 0, FG ≠ 0, and E = 0, then the subsequent singular soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)×11tanhF2G22(x+2ακt+C)×eiκx89F2G2κ2βl2(F2G2)μl+γl+τlt+θ,
(61)
s(x,t)=2β23(μ2+γ2+τ2)×11tanhF2G22(x+2ακt+C)×eiκx89F2G2κ2βl2(F2G2)μl+γl+τlt+θ.
(62)

When E = F = G = kE, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)1ekE(x+2ακt+C)×eiκx89k2E2κ2βl2(K2E2)μl+γl+τlt+θ,
(63)
s(x,t)=4β23(μ2+γ2+τ2)1ekE(x+2ακt+C)×eiκx89k2E2κ2βl2(K2E2)μl+γl+τlt+θ.
(64)

When G = E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)FEF+F+EF(EF)eF(x+2ακt+C)1(E+F)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(65)
s(x,t)=2β23(μ2+γ2+τ2)FEF+F+EF(EF)eF(x+2ακt+C)1(E+F)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(66)

When E = G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)FGFF+GF(FG)eF(x+2ακt+C)1(F+G)eF(x+2ακt+C)+1×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(67)
s(x,t)=2β23(μ2+γ2+τ2)FGFF+GF(FG)eF(x+2ακt+C)1(F+G)eF(x+2ακt+C)+1×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(68)

When G = −E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)FEFFEFeF(x+2ακt+C)FEeF(x+2ακt+C)+FE×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(69)
s(x,t)=2β23(μ2+γ2+τ2)FEFFEF×eF(x+2ακt+C)FEeF(x+2ακt+C)+FE×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(70)

When F = G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)GeE(x+2ακt+C)F×eiκx89E2κ2βl2E2μl+γl+τlt+θ,
(71)
s(x,t)=4β23(μ2+γ2+τ2)GeE(x+2ακt+C)F×eiκx89E2κ2βl2E2μl+γl+τlt+θ.
(72)

Case 3:

A0=23F2+E2G2EF2+E2G2βl(F2+E2G2)(μl+γl+τl),A1=23FGβlF2+E2G2μl+γl+τl,B1=0,α=89βl2(F2+E2G2)μl+γl+τl,ω=89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τl.
(73)

Substituting the above-mentioned values in Eq. (19) and using the relation in Eq. (18) yield the following soliton solutions for systems (2) and (3).

When E2 + F2G2 < 0 and FG ≠ 0, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)F2+E2G2EF2+E2G2(F2+E2G2)+1F2+E2G2EG2F2E2×tanG2F2E22(x+2ακt+C)×eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ,
(74)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2G2EF2+E2G2(F2+E2G2)+1F2+E2G2EG2F2E2×tanG2F2E22(x+2ακt+C)×eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ.
(75)

When E2 + F2G2 > 0 and FG ≠ 0, then the subsequent dark soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)F2+E2G2EF2+E2G2(F2+E2G2)+1F2+E2G2E+F2+E2G2×tanhF2+E2G22(x+2ακt+C)×eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ,
(76)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2G2EF2+E2G2(F2+E2G2)+1F2+E2G2E+F2+E2G2×tanhF2+E2G22(x+2ακt+C)×eiκx89E2G2+F2κ2βl2(F2+E2G2)μl+γl+τlt+θ.
(77)

When E2 + F2G2 > 0, F ≠ 0, and G = 0, then the subsequent dark soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)F2+E2EF2+E2(F2+E2)+1F2+E2E+F2+E2×tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2(F2+E2)μl+γl+τlt+θ,
(78)
s(x,t)=2β23(μ2+γ2+τ2)F2+E2EF2+E2(F2+E2)+1F2+E2E+F2+E2×tanhF2+E22(x+2ακt+C)×eiκx89E2+F2κ2βl2(F2+E2)μl+γl+τlt+θ.
(79)

When E2 + F2G2 < 0, G ≠ 0, and F = 0, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)E2G2EE2G2(E2G2)+1E2G2EG2E2×tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2(E2G2)μl+γl+τlt+θ,
(80)
s(x,t)=2β23(μ2+γ2+τ2)E2G2EE2G2(E2G2)+1E2G2EG2E2×tanG2E22(x+2ακt+C)×eiκx89E2G2κ2βl2(E2G2)μl+γl+τlt+θ.
(81)

When E2 + F2G2 > 0, FG ≠ 0, and E = 0, then the subsequent dark soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)×1+tanhF2G22(x+2ακt+C)×eiκx89F2G2κ2βl2(F2G2)μl+γl+τlt+θ,
(82)
s(x,t)=2β23(μ2+γ2+τ2)×1+tanhF2G22(x+2ακt+C)×eiκx89F2G2κ2βl2(F2G2)μl+γl+τlt+θ.
(83)

When E = G = kE and F = −kE, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)ekE(x+2ακt+C)1ekE(x+2ακt+C)×eiκx89k2E2κ2βl2K2E2μl+γl+τlt+θ,
(84)
s(x,t)=4β23(μ2+γ2+τ2)ekE(x+2ακt+C)1ekE(x+2ακt+C)×eiκx89k2E2κ2βl2K2E2μl+γl+τlt+θ.
(85)

When G = E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)FEFFEF×(E+F)eF(x+2ακt+C)1(EF)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(86)
s(x,t)=2β23(μ2+γ2+τ2)FEFFEF×(E+F)eF(x+2ακt+C)1(EF)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(87)

When E = G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=2β13(μ1+γ1+τ1)FGF+FGF×(F+G)eF(x+2ακt+C)+1(FG)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(88)
s(x,t)=2β23(μ2+γ2+τ2)FGF+FGF×(F+G)eF(x+2ακt+C)+1(FG)eF(x+2ακt+C)1×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(89)

When G = −E, then the following periodic soliton solutions are obtained:

r(x,t)=2β13(μ1+γ1+τ1)FEF+E+FF×eF(x+2ακt+C)+FEeF(x+2ακt+C)FE×eiκx89F2κ2βl2F2μl+γl+τlt+θ,
(90)
s(x,t)=2β23(μ2+γ2+τ2)FEF+E+FF×eF(x+2ακt+C)+FEeF(x+2ακt+C)FE×eiκx89F2κ2βl2F2μl+γl+τlt+θ.
(91)

When F = −G, then the subsequent periodic soliton solutions are obtained,

r(x,t)=4β13(μ1+γ1+τ1)GeE(x+2ακt+C)GeE(x+2ακt+C)1×eiκx89E2κ2βl2E2μl+γl+τlt+θ,
(92)
s(x,t)=4β23(μ2+γ2+τ2)GeE(x+2ακt+C)GeE(x+2ακt+C)1×eiκx89E2κ2βl2E2μl+γl+τlt+θ.
(93)

It is important to mention that all the above-mentioned solutions are valid for

μ1+γ1+τ1>0,
(94)
μ2+γ2+τ2>0.
(95)

In order to solve Eq. (16) by using the first integral method we first introduce the following transformations:55–57 

U(ξ)=X(ξ),Y(ξ)=X(ξ).
(96)

Equation (16) takes the following form:

αYlακ2+ωXl+2βlXl2+μl+γl+τlXl3=0.
(97)

Equation (97) can be rewritten as

Yl(ξ)=ακ2+ωαXl2βlαXl2μl+γl+τlαXl3.
(98)

According to the first integral method, it is assumed that Xl(ξ) and Yl(ξ) are non-trivial solutions of Eq. (98) and the polynomial Q(Xl,Yl)=j=0maj(Xl)Ylj(ξ) is an irreducible polynomial in the complex domain C[Xl, Yl] such that

QXl(ξ),Yl(ξ)=j=0maj(Xl)Ylj=0,
(99)

where aj(Xl)(j = 0, 1, 2, 3, …, m) are polynomials in Xl and am(Xl) ≠ 0. By the division theorem, there exists a polynomial [g(Xl) + h(Xl)Yl] in the complex domain C[Xl, Yl] such that

dQdξ=QXldXldξ+QYldYldξ=g(Xl)+h(Xl)Yl(ξ)j=0maj(Xl)Ylj.
(100)

For m = 1, Eq. (99) becomes

Q(Xl,Yl)=a0(Xl)+a1(Xl)Yl=0.
(101)

Equation (100) becomes

da0(Xl)dXlYl+da1(Xl)dXlYl2+a1(Xl)×ω+aκ2αXl2βlαXl2μl+γl+τlαXl3=a0(Xl)g(Xl)+a1(Xl)g(Xl)+a0(Xl)h(Xl)Yl+a1(Xl)h(Xl)Yl2.
(102)

Equating the coefficients of Ylj(j=0,1,2) on both sides of Eq. (102) gives

Yl0:a0(Xl)g(Xl)=a1(Xl)ω+aκ2αXl2βlαXl2μl+γl+τlαXl3,
(103)
Yl1:da0(Xl)dXl=a1(Xl)g(Xl)+a0(Xl)h(Xl),
(104)
Yl2:da1(Xl)dXl=a1(Xl)h(Xl).
(105)

Since aj(Xl)(j = 0, 1) are assumed to be polynomials, if we choose h(Xl) = 0, Eq. (105) yields a1(Xl) = constant. For simplicity, take a1(Xl) = 1. Balancing the degrees of a0(Xl) and g(Xl) gives a degree of g(Xl) = 1. Suppose that

g(Xl)=AXl+B,
(106)

where A ≠ 0. From Eq. (104), we obtain

a0(Xl)=AXl22+BXl+C,
(107)

where C is a constant of integration. When substituting a0(Xl), a1(Xl) and g(Xl) in Eq. (103) and equating the coefficients of Xlj(j=0,1,2,3) on both sides, the system of nonlinear algebraic equations is obtained. After solving the system, the following values of constants are obtained:

A=±2μl+γl+τlα,B=22βl3αμl+γl+τl,C=0.
(108)

Using the above-mentioned values in Eq. (101), we obtain

Y(ξ)=22βl3αμl+γl+τlXlμl+γl+τl2αXl2,
(109)

In order to solve Eq. (109), we refer to the Bernoulli equation,

v(ξ)=l1v(ξ)+l2vβ(ξ),
(110)

where l1, l2, and β are real integers and l1l2 ≠ 0 and β ≠ 1. Its general solution is of the form

v(ξ)=l1l2ϵ0exp(l1(1β)ξ)+11β1

or

v(ξ)=l12l21+tanhl1(1β)2ξlnϵ021β1,ifϵ0>0=l12l21+cothl1(1β)2ξln(ϵ0)21β1,ifϵ0<0=l1l21β1,ifϵ0=0.
(111)

If we choose l1=22βl3αμl+γl+τl, l2=μl+γl+τl2α, and β = 2 in Eq. (111), then we get our required solutions.

If ϵ0 > 0, the dark soliton solution is obtained as

r(x,t)=2β13(μ1+γ1+τ1)×1±tanh2β13αμ1+γ1+τ1ξlnϵ02×ei(κx+ωt+θ),
(112)
s(x,t)=2β23(μ2+γ2+τ2)×1±tanh2β23αμ2+γ2+τ2ξlnϵ02×ei(κx+ωt+θ).
(113)

If ϵ0 < 0, we obtain the singular soliton solution,

r(x,t)=2β13(μ1+γ1+τ1)×1±coth2β13αμ1+γ1+τ1ξln(ϵ0)2×ei(κx+ωt+θ),
(114)
s(x,t)=2β23(μ2+γ2+τ2)×1±coth2β23αμ2+γ2+τ2ξln(ϵ0)2×ei(κx+ωt+θ).
(115)

If ϵ0 = 0, we obtain the plane wave solution,

r(x,t)=4β13(μ1+γ1+τ1)ei(κx+ωt+θ),
(116)
s(x,t)=4β23(μ2+γl+τ2)ei(κx+ωt+θ).
(117)

The constraint conditions for the existence of soliton solutions obtained by the first integral method are α < 0, μ1 + γ1 + τ1 > 0, and μ1 + γ1 + τ1 > 0.

In this section, the GG2-expansion method58 is employed to solve Eq. (16). According to this method, the traveling wave solution can be expressed as

U(ξ)=a0+n=1NanGG2n+bnGG2n,
(118)

where G = G(ξ) satisfies

GG2=ϵ+δGG22,
(119)

in which δ ≠ 0 and ϵ ≠ 1 are integers. The unknown constants a0, an, and bn (n = 1, 2, 3, …, N) are to be determined. Balancing the terms Ul and Ul3 in Eq. (16) by using the homogeneous principle yields N = 1. As a result, Eq. (118) takes the form

U(ξ)=a0+a1GG2+b1GG21.
(120)

Now putting Eq. (120) into Eq. (16) and then comparing the coefficients of same powers of GG2j, (j = 0, ±1, ±2, ±3, ±4), to 0 provide a system of algebraic equations. The following set of solutions are retrieved on solving the system of algebraic equations.

Set 1:

a0=2βl3μl+γl+τl,a1=0,b1=±2αϵμl+γl+τl,
δ=2βl29α(μl+γl+τl)ϵ,ω=ακ28βl29(μl+γl+τl).

Set 2:

a0=2βl3μl+γl+τl,a1=±2αδμl+γl+τl,b1=0,
ϵ=2βl29α(μl+γl+τl)δ,ω=ακ28βl29(μl+γl+τl).

Set 3:

a0=2βl3μl+γl+τl,a1=±2αδμl+γl+τl,b1=±βl292α(μl+γl+τl)3δ,
ϵ=βl218α(μl+γl+τl)δ,ω=ακ28βl29(μl+γl+τl).

According to set 1, the subsequent solutions are retrieved.

If ϵδ > 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2δϵαMcos[δϵξ]Psin[δϵξ]μ1+γ1+τ1Pcos[δϵξ]+Msin[δϵξ],
(121)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2δϵαMcos[δϵξ]Psin[δϵξ]μ2+γ2+τ2Pcos[δϵξ]+Msin[δϵξ].
(122)

If ϵδ < 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2αϵμ1+γ1+τ1×|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M1,
(123)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2αϵμ2+γ2+τ2×|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M1.
(124)

Upon choosing P = M, the dark soliton solution is obtained as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ12|δϵ|αtanh|δϵ|ξμ1+γ1+τ1,
(125)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ22|δϵ|αtanh|δϵ|ξμ2+γ2+τ2.
(126)

If ϵ = 0, δ ≠ 0, the plane wave solution is obtained as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1,
(127)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2.
(128)

According to set 2, the following solutions are retrieved.

If ϵδ > 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2δϵαPcosδϵξ+Msinδϵξμ1+γ1+τ1McosδϵξPsinδϵξ,
(129)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2δϵαPcosδϵξ+Msinδϵξμ2+γ2+τ2McosδϵξPsinδϵξ.
(130)

If ϵδ < 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2αδμ1+γ1+τ1×|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M,
(131)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2αδμ2+γ2+τ2×|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M.
(132)

To obtain the soliton solution, P = M is chosen; we get the singular soliton as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ12|δϵ|αcoth|δϵ|ξμ1+γ1+τ1,
(133)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ22|δϵ|αcoth|δϵ|ξμ2+γ2+τ2.
(134)

If ϵ = 0, δ ≠ 0, the plane wave solution is obtained as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1,
(135)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2.
(136)

According to set 3, the subsequent solutions are retrieved.

If ϵδ > 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2δϵαPcosδϵξ+Msinδϵξμ1+γ1+τ1McosδϵξPsinδϵξ±β1292δϵα(μ1+γ1+τ1)3Mcos[δϵξ]Psin[δϵξ]Pcos[δϵξ]+Msin[δϵξ],
(137)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2δϵαPcosδϵξ+Msinδϵξμ2+γ2+τ2McosδϵξPsinδϵξ±β2292δϵα(μ2+γ2+τ2)3Mcos[δϵξ]Psin[δϵξ]Pcos[δϵξ]+Msin[δϵξ].
(138)

If ϵδ < 0,

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ1±2αδμ1+γ1+τ1|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M±β1292α(μ1+γ1+τ1)3δ|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M1,
(139)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ2±2αδμ2+γ2+τ2|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M±βl292α(μ2+γ2+τ2)3δ|ϵδ|δPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)+MPsinh(2|ϵδ|ξ)+Pcosh(2|ϵδ|ξ)M1.
(140)

Upon choosing P = M, the dark singular combo soliton solution is obtained as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ12|δϵ|αμ1+γ1+τ1coth|δϵ|ξβ1292|δϵ|α(μ1+γ1+τ1)3tanh|δϵ|ξ,
(141)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ22|δϵ|αμl+γl+τlcoth|δϵ|ξβ2292|δϵ|α(μ2+γ2+τ2)3tanh|δϵ|ξ.
(142)

If ϵ = 0, δ ≠ 0, the plane wave solution is obtained as

r(x,t)=eiκx+ωt+θ2β13μ1+γ1+τ12αPμ1+γ1+τ1(M+Pξ)β12(M+Pξ)92αP(μ1+γ1+τ1)3,
(143)
s(x,t)=eiκx+ωt+θ2β23μ2+γ2+τ22αPμ2+γ2+τ2(M+Pξ)β22(M+Pξ)92αP(μ2+γ2+τ2)3.
(144)

The constraint conditions for the existence of soliton solutions given above using the GG2–expansion method are α < 0, μ1 + γ1 + τ1 > 0, and μ2 + γ2 + τ2 > 0.

This section deals with the comparison of obtained results with some previously known ones. A detailed analysis is made on the basis of different values of parameters E, F, and G, which is represented through equation numbers of the present article and already exists in the literature, as shown in Table I.

TABLE I.

Comparison of current paper solutions with already existing solutions.

Solutions by theSolutions by theSolutions by the
Parametric valuesSolutions of current paperJEF-expansion method60 GG method61 F-expansion method62 
F = 2, E, G, C = 0 (76), (77), (78), (79), (82), (83) (29), (30) (48), (49) (84), (85) 
F = 2, E, G, C = 0 (55), (56), (57), (58), (61), (62) (31), (32) (52), (53) (88), (89) 
F = 4, E, G, C = 0 (55), (56), (57), (58), (61), (62) (33), (34) … … 
G = 2, E, F, C = 0 (53), (54), (59), (60) … (62), (63) (120), (121) 
G = 2, E, F, C = 0 (74), (75), (80), (81) … (58), (59) (118), (119) 
F = 1, E, G, C = 0 (55), (56), (57), (58), (61), (62) … … (108), (109) 
F = 1, E, G, C = 0 (76), (77), (78), (79), (82), (83) … … (110), (111) 
Solutions by theSolutions by theSolutions by the
Parametric valuesSolutions of current paperJEF-expansion method60 GG method61 F-expansion method62 
F = 2, E, G, C = 0 (76), (77), (78), (79), (82), (83) (29), (30) (48), (49) (84), (85) 
F = 2, E, G, C = 0 (55), (56), (57), (58), (61), (62) (31), (32) (52), (53) (88), (89) 
F = 4, E, G, C = 0 (55), (56), (57), (58), (61), (62) (33), (34) … … 
G = 2, E, F, C = 0 (53), (54), (59), (60) … (62), (63) (120), (121) 
G = 2, E, F, C = 0 (74), (75), (80), (81) … (58), (59) (118), (119) 
F = 1, E, G, C = 0 (55), (56), (57), (58), (61), (62) … … (108), (109) 
F = 1, E, G, C = 0 (76), (77), (78), (79), (82), (83) … … (110), (111) 

In Table I, the first column shows different values of E, F, and G, and the second column represents the equation numbers of the concerned article; third, fourth, and fifth columns denote the equation numbers of the articles.60–62 It is observed that for different values of E, F, and G, most of our results match exactly the solutions60–62 mentioned in Table I, which shows the effectiveness of our results as a generalized case of the mentioned published results. The values of E, F, and G, which are taken from Table I, satisfy their corresponding constraints.

From Table I, we find that the techniques implemented in this study, over all the other methods, provide further new computational solutions, including additional free parameters. Most of the obtained solutions in the literature are taken via these applied approaches as a particular case, and we receive some new solutions as well.

Remarks:

  1. To the best of our knowledge, the obtained results in this article are new, except those mentioned in Table I.

  2. The CPU time of the computation is ∼0.2189 s.

This paper reveals a plethora of solutions to the coupled NLSE in birefringent fibers with 4WM incorporating QC nonlinearity. The improved tanϕ(ξ)2-expansion method, first integral method, and GG2-expansion method are used to procure these soliton solutions. Dark, periodic, singular, dark-singular, and a plenty of other soliton solutions have been successfully yielded through this process. A detailed comparison of solutions with the already published results reveals that our techniques are not only reliable but also fruitful as they provide us with a bunch of new solutions. The results being reported in this work are an excellent addition to the existing literature. In the near future, we will modify the algorithms presented here to deal with different NLEEs when their coefficients are variables, for exhaling nonautonomous wave solutions.

All authors contributed equally to this work. All authors read and approved the final manuscript.

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before.

Emad E. Mahmoud acknowledges Taif University Researchers Supporting Project No. (TURSP-2020/20), Taif University, Taif, Saudi Arabia. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

The authors declare that they have no competing interests.

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

1.
B.
Ghanbari
,
K. S.
Nisar
, and
M.
Aldhaifallah
, “
Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method
,”
Adv. Differ. Equations
2020
,
328
.
2.
K. S.
Nisar
,
O. A.
Ilhan
,
S. T.
Abdulazeez
,
J.
Manafian
,
S. A.
Mohammed
, and
M. S.
Osman
, “
Novel multiple soliton solutions for some nonlinear PDEs via multiple exp-function method
,”
Results Phys.
21
,
103769
(
2021
).
3.
M. A.
Kayum
,
S.
Ara
,
M. S.
Osman
,
M. A.
Akbar
, and
K. A.
Gepreel
, “
Onset of the broad-ranging general stable soliton solutions of nonlinear equations in physics and gas dynamics
,”
Results Phys.
20
,
103762
(
2021
).
4.
A.
Biswas
,
A. H.
Kara
,
M. Z.
Ullah
,
Q.
Zhou
,
H.
Triki
, and
M.
Belic
, “
Conservation laws for cubic-quartic optical solitons in Kerr and power law media
,”
Optik
145
,
650
654
(
2017
).
5.
A.
Biswas
,
Q.
Zhou
,
S. P.
Moshokoa
,
H.
Triki
,
M.
Belic
, and
R. T.
Alqahtani
, “
Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations
,”
Optik
145
,
14
17
(
2017
).
6.
A.
Biswas
,
H.
Triki
,
Q.
Zhou
,
S. P.
Moshokoa
,
M. Z.
Ullah
, and
M.
Belic
, “
Cubic-quartic optical solitons in Kerr and power law media
,”
Optik
144
,
357
362
(
2017
).
7.
N.
Raza
and
A.
Javid
, “
Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion
,”
Optik
158
,
1049
1057
(
2018
).
8.
A.
Biswas
,
Q.
Zhou
,
M. Z.
Ullah
,
H.
Triki
,
S. P.
Moshokoa
, and
M.
Belic
, “
Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle
,”
Optik
143
,
131
134
(
2017
).
9.
A.
Biswas
,
Q.
Zhou
,
M. Z.
Ullah
,
M.
Asma
,
S. P.
Moshokoa
, and
M.
Belic
, “
Perturbation theory and optical soliton cooling with anti-cubic nonlinearity
,”
Optik
142
,
73
76
(
2017
).
10.
N.
Raza
and
A.
Javid
, “
Dynamics of optical solitons with Radhakrishanan–Kundu–Lakshmanan model via two reliable integration schemes
,”
Optik
178
,
557
566
(
2019
).
11.
J.-G.
Liu
,
M. S.
Osman
, and
A.-M.
Wazwaz
, “
A variety of nonautonomous complex wave solutions for the (2 + 1)-dimensional nonlinear Schrödinger equation with variable coefficients in nonlinear optical fibers
,”
Optik
180
,
917
923
(
2019
).
12.
M.
Eslami
, “
Solitary wave solutions for perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity under the DAM
,”
Optik
126
,
1312
1317
(
2015
).
13.
S.
Özgül
,
M.
Turan
, and
A.
Yıldırım
, “
Exact traveling wave solutions of perturbed nonlinear Schrodinger’s equation (NLSE) with Kerr law nonlinearity
,”
Optik
123
,
2250
2253
(
2012
).
14.
Q.
Zhou
, “
Analytic study on optical solitons in a Kerr-law medium with an imprinted parity-time-symmetric mixed linear-nonlinear lattice
,”
Proc. Rom. Acad., Ser. B
18
,
223
230
(
2017
).
15.
Y.
Ding
,
M. S.
Osman
, and
A.-M.
Wazwaz
, “
Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms
,”
Optik
181
,
503
513
(
2019
).
16.
A.
Biswas
, “
Perturbation of solitons with non-Kerr law nonlinearity
,”
Chaos
13
,
815
823
(
2002
).
17.
X
.
Li
and
M.
Wang
, “
A sub-ODE method for finding exact solutions of a generalized KdV–mKdV equation with high order nonlinear terms
,”
Phys. Lett. A
361
,
115
118
(
2007
).
18.
J.-H.
He
and
X.-H.
Wu
, “
Exp-function method for nonlinear wave equations
,”
Chaos, Solitons Fractals
30
,
700
708
(
2006
).
19.
K. K.
Ali
,
M. S.
Osman
, and
M.
Abdel-Aty
, “
New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method
,”
Alexandria Eng. J.
59
,
1191
1196
(
2020
).
20.
N.
Raza
and
A.
Javid
, “
Optical dark and dark-singular soliton solutions of (1 + 2)-dimensional chiral nonlinear Schrodinger equation
,”
Waves Random Complex Media
29
(
3
),
496
508
(
2019
).
21.
K.
Hayata
and
M.
Koshiba
, “
Prediction of unique solitary-wave polaritons in quadratic-cubic nonlinear dispersive media
,”
J. Opt. Soc. Am. B
11
,
2581
2585
(
1994
).
22.
J.
Fujioka
,
E.
Cortés
,
R.
Pérez-Pascual
,
R. F.
Rodríguez
,
A.
Espinosa
, and
B. A.
Malomed
, “
Chaotic solitons in the quadratic-cubic nonlinear Schrodinger equation under nonlinearity management
,”
Chaos
21
,
033120
(
2011
).
23.
A.
Zafar
,
K. K.
Ali
, and
M.
Raheel
, “
N. equation with beta-derivative via three distinctive approaches
,”
Eur. Phys. J. Plus
135
,
726
(
2020
).
24.
B.
Ghanbari
and
K. S.
Nisar
, “
Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method
,”
Alexandria Eng. J.
59
(
5
),
3171
3179
(
2020
).
25.
H.
Singh
and
H. M.
Srivastava
, “
Numerical simulation for fractional-order Bloch equation arising in nuclear magnetic resonance by using the Jacobi polynomials
,”
Appl. Sci.
10
(
8
),
2850
(
2020
).
26.
H.
Singh
,
R. K.
Pandey
, and
H. M.
Srivastava
, “
Solving non-linear fractional variational problems using Jacobi polynomials
,”
Mathematics
7
(
3
),
224
(
2019
).
27.
H.
Singh
,
M. R.
Sahoo
, and
O. P.
Singh
, “
Numerical method based on Galerkin approximation for the fractional advection-dispersion equation
,”
Int. J. Appl. Comput. Math.
3
(
3
),
2171
2187
(
2017
).
28.
A.
Houwe
,
S.
Abbagari
,
M.
Inc
,
G.
Betchewe
,
S. Y.
Doka
,
K. T.
Crépin
, and
K. S.
Nisar
, “
Chirped solitons in discrete electrical transmission line
,”
Results Phys.
18
,
103188
(
2020
).
29.
M.
Akbar
,
R.
Nawaz
,
S.
Ahsan
,
K. S.
Nisar
,
A. H.
Abdel-Aty
, and
H.
Eleuch
, “
New approach to approximate the solution for the system of fractional order Volterra integro-differential equations
,”
Results Phys.
19
,
103453
(
2020
).
30.
H.
Singh
and
C. S.
Singh
, “
A reliable method based on second kind Chebyshev polynomial for the fractional model of Bloch equation
,”
Alexandria Eng. J.
57
(
3
),
1
425
1432
(
2018
).
31.
H.
Singh
,
F.
Akhavan Ghassabzadeh
,
E.
Tohidi
, and
C.
Cattani
, “
Legendre spectral method for the fractional Bratu problem
,”
Math. Methods Appl. Sci.
43
(
9
),
5941
5952
(
2020
).
32.
H.
Singh
and
H. M.
Srivastava
, “
Numerical investigation of the fractional order Liénard and Duffing equations arising in oscillating circuit theory
,”
Front. Phys.
8
,
120
(
2020
).
33.
H.
Singh
and
H. M.
Srivastava
, “
Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients
,”
Physica A
523
,
1130
1149
(
2019
).
34.
M.
Asma
,
W. A. M.
Othman
,
B. R.
Wong
, and
A.
Biswas
, “
Optical soliton perturbation with quadratic-cubic nonlinearity by semi-inverse variational principle
,”
Proc. Rom. Acad., Ser. A
18
,
331
336
(
2017
).
35.
M.
Asma
,
W. A. M.
Othman
,
B. R.
Wong
, and
A.
Biswas
, “
Optical soliton perturbation with quadratic-cubic nonlinearity by the method of undetermined coefficients
,”
J. Optoelectron. Adv. Mater.
19
,
699
703
(
2017
).
36.
M.
Asma
,
W. A. M.
Othman
,
B. R.
Wong
, and
A.
Biswas
, “
Optical soliton perturbation with quadratic-cubic nonlinearity by traveling wave hypothesis
,”
Optoelectron. Adv. Mater., Rapid Commun.
11
,
517
519
(
2017
).
37.
M.
Asma
,
W. A. M.
Othman
,
B. R.
Wong
, and
A.
Biswas
, “
Optical soliton perturbation with quadratic-cubic nonlinearity by Adomian decomposition method
,”
Optik
164
,
632
641
(
2018
).
38.
A.
Biswas
,
M. Z.
Ullah
,
M.
Asma
,
Q.
Zhou
,
S. P.
Moshokoa
, and
M.
Belic
, “
Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle
,”
Optik
139
,
16
19
(
2017
).
39.
N.
Raza
and
A.
Zubair
, “
Bright, dark and dark-singular soliton solutions of nonlinear Schrodinger’s equation with spatio-temporal dispersion
,”
J. Mod. Opt.
65
,
1975
1982
(
2018
).
40.
D.
Lu
,
M. S.
Osman
,
M. M. A.
Khater
,
R. A. M.
Attia
, and
D.
Baleanu
, “
Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X = Mo, Cu)) based on ternary alloys
,”
Physica A
537
,
122634
(
2020
).
41.
A.
Biswas
,
M. Z.
Ullah
,
Q.
Zhou
,
S. P.
Moshokoa
,
H.
Triki
, and
M.
Belic
, “
Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle
,”
Optik
145
,
18
21
(
2017
).
42.
M. S.
Osman
and
H. I.
Abdel-Gawad
, “
Multi-wave solutions of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients
,”
Eur. Phys. J. Plus
130
(
10
),
215
(
2015
).
43.
V. S.
Kumar
,
H.
Rezazadeh
,
M.
Eslami
,
F.
Izadi
, and
M. S.
Osman
, “
Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity
,”
Int. J. Appl. Comput. Math.
5
(
5
),
127
(
2019
).
44.
D.
Lu
,
K. U.
Tariq
,
M. S.
Osman
,
D.
Baleanu
,
M.
Younis
, and
M. M. A.
Khater
, “
New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications
,”
Results Phys.
14
,
102491
(
2019
).
45.
M. S.
Osman
,
H.
Rezazadeh
, and
M.
Eslami
, “
Traveling wave solutions for (3+ 1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity
,”
Nonlinear Eng.
8
(
1
),
559
567
(
2019
).
46.
M. S.
Osman
,
H.
Rezazadeh
,
M.
Eslami
,
A.
Neirameh
,
M.
Mirzazadeh
, “
Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods
,”
U.P.B. Sci. Bull., Ser. A
80
(
4
),
267
278
(
2018
).
47.
H. M.
Srivastava
,
D.
Baleanu
,
J. A. T.
Machado
,
M. S.
Osman
,
H.
Rezazadeh
,
S.
Arshed
, and
H.
Günerhan
, “
Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method
,”
Phys. Scr.
95
(
7
),
075217
(
2020
).
48.
S.
Kumar
,
A.
Kumar
,
B.
Samet
,
J. F.
Gómez-Aguilar
, and
M. S.
Osman
, “
A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment
,”
Chaos Solitons Fractals
,
141
,
110321
(
2020
).
49.
S.
Lee
and
S.-T.
Ho
, “
Optical switching scheme based on the transmission of coupled gap solitons in nonlinear periodic dielectric media
,”
Opt. Lett.
18
,
962
964
(
1993
).
50.
W.
Samir
,
S. J.
Garth
, and
C.
Pask
, “
Interplay of grating and nonlinearity in mode coupling
,”
J. Opt. Soc. Am. B
11
,
64
71
(
1994
).
51.
S.
Pereira
and
J. E.
Sipe
, “
Nonlinear pulse propagation in birefringent fiber Bragg gratings
,”
Opt. Express
3
,
418
432
(
1998
).
52.
M.
Wang
,
X.
Li
, and
J.
Zhang
, “
The (G′/G)-expension method and traveling wave solutions of nonlinear evolution equations in mathematical physics
,”
Phys. Lett. A
372
,
417
423
(
2008
).
53.
M. S.
Osman
,
J. T.
Machado
,
D.
Baleanu
,
A.
Zafar
, and
M.
Raheel
, “
On distinctive solitons type solutions for some important nonlinear Schrödinger equations
,”
Opt. Quant. Electron.
53
(
2
),
1
24
(
2021
).
54.
M.
Eslami
,
F. S.
Khodadad
,
F.
Nazari
, and
H.
Rezazadeh
, “
The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative
,”
Opt. Quantum Electron.
49
,
391
(
2017
).
55.
Z.
Feng
, “
The first integral method to study the Burgers–Korteweg–dV equation
,”
J. Phys. A: Math. Gen.
35
,
343
349
(
2002
).
56.
B.
Zheng
, “
Traveling wave solution for some nonlinear evolution equations by the first integral method
,”
WSEAS Trans. Math.
8
,
249
258
(
2011
).
57.
N.
Taghizadeh
,
M.
Mirzazadeh
, and
F.
Farahrooz
, “
Exact solutions of the nonlinear Schrodinger equation by the first integral method
,”
J. Math. Anal. Appl.
374
,
549
553
(
2011
).
58.
G.
Akram
and
N.
Mahak
, “
Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity
,”
Eur. Phys. J. Plus
133
,
212
(
2018
).
59.
A.
Biswas
,
M.
Ekici
,
A.
Sonmezoglu
, and
M.
Belic
, “
Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended trial function scheme
,”
Optik
176
,
542
548
(
2019
).
60.
A.
Biswas
,
M.
Ekici
,
A.
Sonmezoglu
, and
M.
Belic
, “
Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended Jacobi’s elliptic function expansion
,”
Optik
178
,
117
121
(
2019
).
61.
A.
Biswas
,
M.
Ekici
,
A.
Sonmezoglu
, and
M.
Belic
, “
Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended (G′/G)-expansion scheme
,”
Optik
178
,
59
65
(
2019
).
62.
A.
Biswas
,
M.
Ekici
,
A.
Sonmezoglu
, and
M.
Alfiras
, “
Optical solitons in birefringent fibers with four-wave mixing for quadratic-cubic nonlinearity by F-expansion
,”
Optik
178
,
178
189
(
2019
).
63.
J.
Manafian
and
M.
Lakestani
, “
New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients
,”
Int. J. Eng. Math.
2015
,
1
35
.