In order to have a precise knowledge on how pressure gradients and buoyancy force affect fluid flow and energy distribution in a bending channel, it is important to perform a comprehensive study on flow characteristics and heat transfer mechanisms that trigger out the transition of fluids into a turbulent state, subject to a sustained pressure gradient. The present paper explores a computational modeling on two-dimensional fluid flow and thermal characteristics in a bent square channel of strong curvature. The Newton–Raphson (N-R) iteration method is applied to obtain a bifurcation structure depending on the pressure-driven force, the Dean number (De), covering 0 < De ≤ 5000. As a consequence, four branches of asymmetric steady solutions are identified for each of the cases of the Grashof number, Gn (=1000, 1500, and 2000), where only the first branch is found to exhibit asymmetric two-vortex solutions while the remaining branches encompass two- to four-vortex solutions. The similarity and disparity in the branching structure are also demonstrated. Then, adopting the Adam–Bashforth (A-B) method together with Crank–Nicholson (C-N) formula, the unsteady solutions (US) have been explored, validated by power spectrum density (PSD) and phase space Within the realm of US, two- and three-vortex solutions are found and these solutions exhibit transitions from steady to chaotic behavior profoundly. Effects of the Grashof number with convective heat transfer (CHT) are also compared. By analyzing the Nusselt number (Nu), it is observed that in case of highly chaotic flow, CHT experiences substantial enhancement. This intensified CHT arises from increased turbulence and mixing, facilitating more efficient thermal energy exchange under such chaotic flow conditions.

1.
M.
Ahmadian-Elmi
,
M. R.
Hajmohammadi
,
S. S.
Nourazar
,
K.
Vafai
, and
M. B.
Shafii
, “
Investigating the effect of the presence of a pulsating heat pipe on the geometrical parameters of the microchannel heat sink
,”
Numer. Heat Transfer, Part A: Applications
2023
,
1
17
(
2023
).
2.
M.
Ahmadian-Elmi
,
M. R.
Hajmohammadi
,
S. S.
Nourazar
,
K.
Vafai
, and
M. B.
Shafii
, “
Effect of filling ratio, number of loops, and transverse distance on the performance of pulsating heat pipe in a microchannel heat sink
,”
Numer. Heat Transfer, Part A: Applications
2023
,
1
22
(
2023
).
3.
S.
Ghosh
,
E.
Fernandez
, and
J.
Kapat
, “
Fluid-thermal topology optimization of gas turbine blade internal cooling ducts
,”
J. Mech. Des.
144
(
5
),
051703
(
2022
).
4.
J.
Wu
and
B.
Zhao
, “
Effect of ventilation duct as a particle filter
,”
Build. Environ.
42
(
7
),
2523
2529
(
2007
).
5.
N. J.
Rabadi
and
S. A.
Mismar
, “
Enhancing solar energy collection by using curved flow technology coupled with flow in porous media: An experimental study
,”
Solar Energy
75
(
3
),
261
268
(
2003
).
6.
M.
Yadegari
and
A.
Bak Khoshnevis
, “
Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems
,”
Eur. Phys. J. Plus
135
(
6
),
534
(
2020
).
7.
A.
Goharzadeh
and
P.
Rodgers
, “
PIV-measurements of centrifugal instabilities in a rectangular curved duct with a small aspect ratio
,”
Fluids
6
(
5
),
184
(
2021
).
8.
A.
Hussain
,
L.
Sarwar
,
A.
Rehman
,
S.
Akbar
,
F.
Gamaoun
,
H. H.
Coban
,
A. H.
Almaliki
, and
M. S.
Alqurashi
, “
Heat transfer analysis and effects of (silver and gold) nanoparticles on blood flow inside arterial stenosis
,”
Appl. Sci.
12
(
3
),
1601
(
2022
).
9.
X.
Wang
,
Y.
Qiao
,
H.
Qi
, and
H.
Xu
, “
Numerical study of pulsatile non-Newtonian blood flow and heat transfer in small vessels under a magnetic field
,”
Int. Commun. Heat Mass Transfer
133
,
105930
(
2022
).
10.
P. D.
McCormack
,
H.
Welker
, and
M.
Kelleher
, “
Taylor-Goertler vortices and their effect on heat transfer
,”
J. Heat Transfer
92
(
1
),
101
112
(
1970
).
11.
W. R.
Dean
, “
XVI. Note on the motion of fluid in a curved pipe
,”
Philos. Mag.
4
(
20
),
208
223
(
1927
).
12.
W. R.
Dean
, “
Fluid motion in a curved channel
,”
Proc. R. Soc. London, Ser. A
121
(
787
),
402
420
(
1928
).
13.
S.
Yanase
,
R. N.
Mondal
, and
Y.
Kaga
, “
Numerical study of non-isothermal flow with convective heat transfer in a curved rectangular duct
,”
Int. J. Therm. Sci.
44
(
11
),
1047
1060
(
2005
).
14.
S.
Yanase
,
R.
Nath Mondal
,
Y.
Kaga
, and
K.
Yamamoto
, “
Transition from steady to chaotic states of isothermal and non-isothermal flows through a curved rectangular duct
,”
J. Phys. Soc. Jpn.
74
(
1
),
345
358
(
2005
).
15.
L.
Wang
and
T.
Yang
, “
Bifurcation and stability of forced convection in curved ducts of square cross-section
,”
Int. J. Heat Mass Transfer
47
(
14–16
),
2971
2987
(
2004
).
16.
M. S.
Hasan
,
R. N.
Mondal
,
M. Z.
Islam
, and
G.
Lorenzini
, “
Physics of coriolis-energy force in bifurcation and flow transition through a tightly twisted square tube
,”
Chin. J. Phys.
77
,
1305
1330
(
2022
).
17.
M. S.
Hasan
,
R. K.
Chanda
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Effects of rotation on unsteady fluid flow and forced convection in the rotating curved square duct with a small curvature
,”
Facta Univ., Ser.: Mech. Eng.
20
(
2
),
255
278
(
2022
).
18.
M. S.
Hasan
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Curvature induced instability characteristics of laminar flow and heat transfer through a bent square channel
,”
Chin. J. Phys.
77
,
189
213
(
2022
).
19.
M. S.
Hasan
,
S. N.
Dolon
,
H. S.
Chakraborty
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Numerical investigation on flow transition through a curved square duct with negative rotation
,”
J. Appl. Comput. Mech.
7
(
3
),
1435
1447
(
2021
).
20.
M. S.
Hasan
,
S.
Rashid
,
S. N.
Dolon
,
R. K.
Chanda
,
M. M.
Islam
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Investigation on energy distribution in steady and unsteady flow instabilities through a bend square pipe
,”
Rep. Mech. Eng.
2
(
1
),
86
104
(
2021
).
21.
M. S.
Hasan
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Centrifugal-Coriolis instability through a rotating curved square duct with bottom wall heating and cooling from the ceiling
,”
AIP Conf. Proc.
2324
(
1
),
040007
(
2021
).
22.
R. N.
Mondal
,
Y.
Kaga
,
T.
Hyakutake
, and
S.
Yanase
, “
Effects of curvature and convective heat transfer in curved square duct flows
,”
J. Fluids Eng.
128
(
5
),
1013
1022
(
2006
).
23.
Z.
Lin
,
Y.
Zhu
, and
Z.
Wang
, “
Local bifurcation of electrohydrodynamic waves on a conducting fluid
,”
Phys. Fluids
29
(
3
),
032107
(
2017
).
24.
A.
Gelfgat
, “
Instability of steady flows in helical pipes
,”
Phys. Rev. Fluids
5
(
10
),
103904
(
2020
).
25.
A.
Hashemi
,
P. F.
Fischer
, and
F.
Loth
, “
Direct numerical simulation of transitional flow in a finite length curved pipe
,”
J. Turbul.
19
(
8
),
664
682
(
2018
).
26.
R. N.
Mondal
,
T.
Watanabe
,
M. A.
Hossain
, and
S.
Yanase
, “
Vortex-structure and unsteady solutions with convective heat transfer through a curved duct
,”
J. Thermophys. Heat Transfer
31
(
1
),
243
254
(
2017
).
27.
T. T.
Chandratilleke
,
N.
Nadim
, and
R.
Narayanaswamy
, “
Vortex structure-based analysis of laminar flow behaviour and thermal characteristics in curved ducts
,”
Int. J. Therm. Sci.
59
,
75
86
(
2012
).
28.
M. N. A.
Helal
,
B. P.
Ghosh
, and
R. N.
Mondal
, “
Numerical simulation of two-dimensional laminar flow and heat transfer through a rotating curved square channel
,”
Am. J. Fluid Dyn.
6
(
1
),
1
10
(
2016
).
29.
M. H.
Chaudhry
, “
Finite-difference methods
,”
Open-Channel Flow
2008
,
367
405
(
2008
).
30.
M. H.
Chaudhry
, “
Special topics
,”
Open-Channel Flow
2008
,
479
505
(
2008
).
31.
S.
Yanase
and
K.
Nishiyama
, “
On the bifurcation of laminar flows through a curved rectangular tube
,”
J. Phys. Soc. Jpn.
57
(
11
),
3790
3795
(
1988
).
32.
R. N.
Mondal
,
M. M.
Alam
, and
S.
Yanase
, “
Numerical prediction of non-isothermal flow through a rotating curved duct with square cross-section
,”
Sci. Technol. Asia
12
(
3
),
24
43
(
2015
).
33.
R. N.
Mondal
,
S. C.
Ray
, and
S.
Yanase
, “
Combined effects of centrifugal and Coriolis instability of the flow through a rotating curved duct with rectangular cross section
,”
Open J. Fluid Dyn.
04
(
01
),
1
14
(
2014
).
34.
R. N.
Mondal
,
M. S.
Hasan
,
M. S.
Islam
,
M. Z.
Islam
, and
S. C.
Saha
, “
A computational study on fluid flow and heat transfer through a rotating curved duct with rectangular cross section
,”
Int. J. Heat Technol.
39
(
4
),
1213
1224
(
2021
).
35.
R. N.
Mondal
,
M. Z.
Islam
, and
M. S.
Islam
, “
Transient heat and fluid flow through a rotating curved rectangular duct: The case of positive and negative rotation
,”
Procedia Eng.
56
,
179
186
(
2013
).
36.
M.
Zohurul Islam
,
R. N.
Mondal
, and
M. M.
Rashidi
, “
Dean-Taylor flow with convective heat transfer through a coiled duct
,”
Comput. Fluids
149
,
41
55
(
2017
).
37.
M.
Zohurul Islam
,
R.
Nath Mondal
, and
S.
C Saha
, “
Impacts of rotation on unsteady fluid flow and energy distribution through a bending duct with rectangular cross section
,”
Energy Eng.
119
(
2
),
453
472
(
2022
).
38.
R. K.
Chanda
,
M. S.
Hasan
,
G.
Lorenzini
, and
R. N.
Mondal
, “
Effects of rotation and curvature ratio on fluid flow and energy distribution through a rotating curved rectangular channel
,”
J. Eng. Thermophys.
30
(
2
),
243
269
(
2021
).
39.
M. S.
Hasan
,
M. T.
Mollah
,
D.
Kumar
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Effects of rotation on transient fluid flow and heat transfer through a curved square duct: The case of negative rotation
,”
Int. J. Appl. Mech. Eng.
26
(
4
),
29
50
(
2021
).
40.
B.
Zhou
,
J.
Wang
,
Z.
Yao
,
G.
Zhang
,
X.
Han
, and
X.
Wang
, “
Vortex-induced vibration of a cylinder downstream of an elliptical cylinder with different aspect ratios
,”
J. Mar. Sci. Technol.
25
(
4
),
1044
1062
(
2020
).
41.
S. N.
Dolon
,
M. S.
Hasan
,
G.
Lorenzini
, and
R. N.
Mondal
, “
A computational modeling on transient heat and fluid flow through a curved duct of large aspect ratio with centrifugal instability
,”
Eur. Phys. J. Plus
136
(
4
),
382
(
2021
).
42.
A. J.
Chamkha
, “
Unsteady laminar hydromagnetic fluid–particle flow and heat transfer in channels and circular pipes
,”
Int. J. Heat Fluid Flow
21
(
6
),
740
746
(
2000
).
43.
R. K.
Chanda
,
M. S.
Hasan
,
M. M.
Alam
, and
R. N.
Mondal
, “
Hydrothermal behavior of transient fluid flow and heat transfer through a rotating curved rectangular duct with natural and forced convection
,”
Math. Modell. Eng. Probl.
7
(
4
),
501
514
(
2020
).
44.
R. K.
Chanda
,
M. K.
Uddin
, and
R. N.
Mondal
, “
A spectral-based numerical study on time-dependent fluid flow and energy distribution through a rotating coiled rectangular duct with the effects of Coriolis force
,”
Int. J. Adv. Appl. Math. Mech.
8
(
3
),
48
61
(
2021
).
45.
R. K.
Chanda
,
M. S.
Hasan
,
M. M.
Alam
, and
R. N.
Mondal
, “
A computational study on flow characteristics and energy distribution in a rotating coiled rectangular duct with longitudinal vortex generation
,”
J. Naval Archit. Mar. Eng.
18
(
2
),
187
205
(
2021
).
46.
R. K.
Chanda
,
M. S.
Hasan
,
M. M.
Alam
, and
R. N.
Mondal
, “
Taylor-heat flux effect on fluid flow and heat transfer in a curved rectangular duct with rotation
,”
Int. J. Appl. Comput. Math.
7
(
4
),
146
(
2021
).
47.
G.
Guo
,
M.
Kamigaki
,
Q.
Zhang
,
Y.
Inoue
,
K.
Nishida
,
H.
Hongou
,
M.
Koutoku
,
R.
Yamamoto
,
H.
Yokohata
,
S.
Sumi
, and
Y.
Ogata
, “
Experimental study and conjugate heat transfer simulation of turbulent flow in a 90° curved square pipe
,”
Energies
14
(
1
),
94
(
2020
).
48.
N. K.
Manna
,
N.
Biswas
,
D. K.
Mandal
,
U. K.
Sarkar
,
H. F.
Öztop
, and
N.
Abu-Hamdeh
, “
Impacts of heater-cooler position and Lorentz force on heat transfer and entropy generation of hybrid nanofluid convection in quarter-circular cavity
,”
Int. J. Numer. Methods Heat Fluid Flow
33
(
3
),
1249
1286
(
2023
).
49.
S.
Zehisaadat
,
R. K.
Khalajzadeh
,
M. R.
Hajmohammadi
, and
G.
Lorenzini
, “
Geometric optimization of T-shaped fin and inverted fin based on minimum entropy generation objective
,”
J. Eng. Thermophys.
31
,
668
687
(
2022
).
50.
T. T.
Chandratilleke
and
Nursubyakto
, “
Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts
,”
Int. J. Therm. Sci.
42
(
2
),
187
198
(
2003
).
51.
M.
Niemann
,
R. A.
Blazquez Navarro
,
V.
Saini
, and
J.
Fröhlich
, “
Buoyancy impact on secondary flow and heat transfer in a turbulent liquid metal flow through a vertical square duct
,”
Int. J. Heat Mass Transfer
125
,
722
748
(
2018
).
52.
S. C.
Adhikari
,
R. K.
Chanda
,
S.
Bhowmick
,
R. N.
Mondal
, and
S. C.
Saha
, “
Pressure-induced instability characteristics of a transient flow and energy distribution through a loosely bent square duct
,”
Energy Eng.
119
(
1
),
429
451
(
2021
).
53.
M. S.
Hasan
,
R. N.
Mondal
, and
G.
Lorenzini
, “
Physics of bifurcation of the flow and heat transfer through a curved duct with natural and forced convection
,”
Chin. J. Phys.
67
,
428
457
(
2020
).
54.
M. S.
Uddin
,
R. N.
Mondal
, and
S.
Yanase
, “
Numerical prediction of non-isothermal flow through a curved square duct
,”
Int. J. Fluid Mech. Res.
37
(
1
),
85
99
(
2010
).
55.
R. N.
Mondal
,
Y.
Kaga
,
T.
Hyakutake
, and
S.
Yanase
, “
Bifurcation diagram for two-dimensional steady flow and unsteady solutions in a curved square duct
,”
Fluid Dyn. Res.
39
(
5
),
413
446
(
2007
).
56.
K. H.
Winters
, “
A bifurcation study of laminar flow in a curved tube of rectangular cross-section
,”
J. Fluid Mech.
180
,
343
369
(
1987
).
57.
D.
Gottlieb
and
S. A.
Orszag
,
Numerical Analysis of Spectral Methods: Theory and Applications
(
Society for Industrial and Applied Mathematics
,
1977
).
58.
S.
Sugiyama
,
T.
Hayashi
, and
K.
Yamazaki
, “
Flow characteristics in the curved rectangular channels: Visualization of secondary flow
,”
Bull. JSME
26
(
216
),
964
969
(
1983
).
59.
K.
Yamamoto
,
X.
Wu
,
K.
Nozaki
, and
Y.
Hayamizu
, “
Visualization of Taylor–Dean flow in a curved duct of square cross-section
,”
Fluid Dyn. Res.
38
(
1
),
1
18
(
2006
).
60.
R. N.
Mondal
,
S.
Islam
,
K.
Uddin
, and
A.
Hossain
, “
Effects of aspect ratio on unsteady solutions through curved duct flow
,”
Appl. Math. Mech.
34
(
9
),
1107
1122
(
2013
).
You do not currently have access to this content.