Skip Nav Destination
Issues
Mars-Earth rapid interplanetary tether transport (MERITT) architecture
AIP Conf. Proc. 552, 3–9 (2001)
https://doi.org/10.1063/1.1357896
Silicon PV cell production on the Moon as the basis for a new architecture for space exploration
AIP Conf. Proc. 552, 19–24 (2001)
https://doi.org/10.1063/1.1357899
A study of orientation in a zero gravity environment by means of virtual reality simulation
AIP Conf. Proc. 552, 29–34 (2001)
https://doi.org/10.1063/1.1357901
NASA light emitting diode medical applications from deep space to deep sea
Harry T. Whelan; Ellen V. Buchmann; Noel T. Whelan; Scott G. Turner; Vita Cevenini; Helen Stinson; Ron Ignatius; Todd Martin; Joan Cwiklinski; Glenn A. Meyer; Brian Hodgson; Lisa Gould; Mary Kane; Gina Chen; James Caviness
AIP Conf. Proc. 552, 35–45 (2001)
https://doi.org/10.1063/1.1357902
Reality browsing: Using information interaction and robotic autonomy for planetary exploration
AIP Conf. Proc. 552, 64–69 (2001)
https://doi.org/10.1063/1.1357906
Application specific interconnection system for cutting edge packaging technology
AIP Conf. Proc. 552, 76–82 (2001)
https://doi.org/10.1063/1.1357908
Tuneable autonomy and human interfaces for free-flying servicing vehicles
AIP Conf. Proc. 552, 103–108 (2001)
https://doi.org/10.1063/1.1357912
Lunar spaceport launch and landing operational parameters for human-based activity
AIP Conf. Proc. 552, 109–114 (2001)
https://doi.org/10.1063/1.1357913
An opposition class piloted mission to Mars using telerobotics for landing site reconnaissance and exploration
AIP Conf. Proc. 552, 115–120 (2001)
https://doi.org/10.1063/1.1357914
A survey of alternative oxygen production technologies
AIP Conf. Proc. 552, 127–132 (2001)
https://doi.org/10.1063/1.1357916
On-orbit maintenance operations strategy for the International Space Station—concept and implementation
AIP Conf. Proc. 552, 139–146 (2001)
https://doi.org/10.1063/1.1357918
Technology assessment of laser-assisted materials processing in space
AIP Conf. Proc. 552, 153–160 (2001)
https://doi.org/10.1063/1.1357920
Managing NASA’s International Space Station Logistics and Maintenance program
AIP Conf. Proc. 552, 161–169 (2001)
https://doi.org/10.1063/1.1357921
On-demand spares fabrication during space missions using Laser Direct Metal Deposition
AIP Conf. Proc. 552, 170–175 (2001)
https://doi.org/10.1063/1.1357922
Lessons learned from Hubble Space Telescope extra vehicular activity supportability
AIP Conf. Proc. 552, 176–188 (2001)
https://doi.org/10.1063/1.1357923
Three near term commercial markets in space and their potential role in space exploration
AIP Conf. Proc. 552, 196–201 (2001)
https://doi.org/10.1063/1.1357925
Fundamentals of gravity level dependent two-phase flow and heat transfer—A tutorial
AIP Conf. Proc. 552, 209–220 (2001)
https://doi.org/10.1063/1.1357927
Modeling and testing of two-phase flow in manifolds under microgravity conditions
AIP Conf. Proc. 552, 241–246 (2001)
https://doi.org/10.1063/1.1357930
Two-Phase frictional pressure drop correlations for small tubes
AIP Conf. Proc. 552, 247–254 (2001)
https://doi.org/10.1063/1.1357931
Temperature oscillations in loop heat pipe operation
AIP Conf. Proc. 552, 255–262 (2001)
https://doi.org/10.1063/1.1357932
Advanced thermal control technologies for space science missions at Jet Propulsion Laboratory
AIP Conf. Proc. 552, 263–270 (2001)
https://doi.org/10.1063/1.1357933
Development and testing of a prototype low-lift heat pump for spacecraft thermal control
AIP Conf. Proc. 552, 271–276 (2001)
https://doi.org/10.1063/1.1357934
Calibration of an analytical thermal model for an epoxy-based composite sandwich design
AIP Conf. Proc. 552, 304–309 (2001)
https://doi.org/10.1063/1.1357939
Aerodynamic levitation: An approach to microgravity
AIP Conf. Proc. 552, 316–324 (2001)
https://doi.org/10.1063/1.1357941
Thermophysical property measurement and materials research in the NASA/MSFC electrostatic levitator
AIP Conf. Proc. 552, 332–336 (2001)
https://doi.org/10.1063/1.1357943
Measurement of thermophysical properties of metallic melts for high quality castings
AIP Conf. Proc. 552, 337–342 (2001)
https://doi.org/10.1063/1.1357944
An innovative pumping technology—electrohydrodynamic pumping through conduction phenomenon
AIP Conf. Proc. 552, 343–348 (2001)
https://doi.org/10.1063/1.1357945
Non-contact calorimetry of liquid metallic alloys under reduced gravity conditions
AIP Conf. Proc. 552, 349–358 (2001)
https://doi.org/10.1063/1.1357946
Non-desirable convective motion in microgravity experiments
AIP Conf. Proc. 552, 364–369 (2001)
https://doi.org/10.1063/1.1357948
Solar sail technology development and application to fast missions to the outer heliosphere
AIP Conf. Proc. 552, 385–392 (2001)
https://doi.org/10.1063/1.1357951
Laboratory testing of the Mini-Magnetospheric Plasma Propulsion (M2P2) prototype
AIP Conf. Proc. 552, 407–412 (2001)
https://doi.org/10.1063/1.1357955
EDOARD: A tethered device for efficient Electrodynamic De-Orbiting of LEO spacecraft
AIP Conf. Proc. 552, 433–444 (2001)
https://doi.org/10.1063/1.1357959
Practicality of using a Tether for electrodynamic reboost of the International Space Station
AIP Conf. Proc. 552, 445–451 (2001)
https://doi.org/10.1063/1.1357960
Miniature plasma activated systems for tether current generation
AIP Conf. Proc. 552, 452–460 (2001)
https://doi.org/10.1063/1.1357961
Electrodynamic-tether time-domain reflectometer for analyzing tether faults and degradation
AIP Conf. Proc. 552, 461–466 (2001)
https://doi.org/10.1063/1.1357962
Enhancement of electrodynamic tether electron current collection using radio frequency power
AIP Conf. Proc. 552, 473–478 (2001)
https://doi.org/10.1063/1.1357964
Current collection to long, thin probes in a dense high-speed flowing plasma
AIP Conf. Proc. 552, 494–501 (2001)
https://doi.org/10.1063/1.1357967
Design of an artificial gravity generating tethered satellite system
AIP Conf. Proc. 552, 502–507 (2001)
https://doi.org/10.1063/1.1357968
Momentum-exchange/electrodynamic-reboost tether facility for deployment of microsatellites to GEO and the Moon
AIP Conf. Proc. 552, 508–513 (2001)
https://doi.org/10.1063/1.1357969
Microwave beam-driven sail flight experiments
AIP Conf. Proc. 552, 540–545 (2001)
https://doi.org/10.1063/1.1357974
Stability and control of microwave-propelled sails in 1-D
AIP Conf. Proc. 552, 552–558 (2001)
https://doi.org/10.1063/1.1357976
Potential hurdles or gateways in the commercial space transportation market
AIP Conf. Proc. 552, 633–637 (2001)
https://doi.org/10.1063/1.1357986
Forecasting the demand for commercial telecommunications satellites
AIP Conf. Proc. 552, 655–659 (2001)
https://doi.org/10.1063/1.1357989
Human factors engineering of enhanced spaceport procedures
AIP Conf. Proc. 552, 665–670 (2001)
https://doi.org/10.1063/1.1357991
Commercial free flyer satellites and orbital re-entry/recovery systems for low cost microgravity research
AIP Conf. Proc. 552, 693–698 (2001)
https://doi.org/10.1063/1.1357995
A radioisotope powered cryobot for penetrating the Europan ice shell
AIP Conf. Proc. 552, 707–715 (2001)
https://doi.org/10.1063/1.1357997
Interstellar travel—challenging propulsion and power technologies for the next 50 years
AIP Conf. Proc. 552, 716–726 (2001)
https://doi.org/10.1063/1.1357998
Processing and thermal properties of filament wound carbon-carbon composites for impact shell application
AIP Conf. Proc. 552, 727–732 (2001)
https://doi.org/10.1063/1.1357999
Milliwatt radioisotope power supply for the PASCAL Mars surface stations
AIP Conf. Proc. 552, 733–739 (2001)
https://doi.org/10.1063/1.1358000
Thermal vacuum testing of a MHW RTG after 17 years in storage
B. Allen Tolson; Gene D. Brewer; Gerald V. Mintz; Tony Reynoso; Barry K. Pugh; Stephen B. Davis; Timothy J. Hoye
AIP Conf. Proc. 552, 747–752 (2001)
https://doi.org/10.1063/1.1358002
Development program for aqueous recovery process
M. E. Pansoy-Hjelvik; M. Reimus; G. Silver; M. L. Remerowski; G. Jarvinen; A. Ecclesine; G. Alletzhauser; J. Brock; J. Z. Nixon; P. Moniz; G. Purdy; K. B. Ramsey; Liz Foltyn
AIP Conf. Proc. 552, 758–763 (2001)
https://doi.org/10.1063/1.1358004
Removal of Pu-238 from aqueous process streams using a polymer filtration process
Gordon D. Jarvinen; Geraldine M. Purdy; Karen C. Rau; M. L. Remeroski; Mary Ann H. Reimus; Kevin B. Ramsey; Elizabeth M. Foltyn; Barbara F. Smith; Thomas W. Robison
AIP Conf. Proc. 552, 764–769 (2001)
https://doi.org/10.1063/1.1358005
Purification and neutron emission reduction of oxide by nitrate anion exchange processing
AIP Conf. Proc. 552, 770–773 (2001)
https://doi.org/10.1063/1.1358006
A high power, Coated Particle Fuel Compact Radioisotope Heat Unit
AIP Conf. Proc. 552, 774–783 (2001)
https://doi.org/10.1063/1.1358007
Development of a robust space power system decision model
AIP Conf. Proc. 552, 790–796 (2001)
https://doi.org/10.1063/1.1358009
An analysis and procedure for determining space environmental sink temperatures with selected computational results
AIP Conf. Proc. 552, 805–814 (2001)
https://doi.org/10.1063/1.1358011
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
AIP Conf. Proc. 552, 815–821 (2001)
https://doi.org/10.1063/1.1358012
Options for development of space fission propulsion systems
Mike Houts; Melissa Van Dyke; Tom Godfroy; Kevin Pedersen; James Martin; Ricky Dickens; Pat Salvail; Ivana Hrbud
AIP Conf. Proc. 552, 822–827 (2001)
https://doi.org/10.1063/1.1358013
Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design
AIP Conf. Proc. 552, 828–836 (2001)
https://doi.org/10.1063/1.1358014
Phase 1 space fission propulsion system testing and development progress
Melissa Van Dyke; Mike Houts; Kevin Pedersen; Tom Godfroy; Ricky Dickens; David Poston; Bob Reid; Pat Salvail; Peter Ring
AIP Conf. Proc. 552, 837–842 (2001)
https://doi.org/10.1063/1.1358015
Safe affordable fission engine (SAFE 30) module conductivity test thermal model correlation
AIP Conf. Proc. 552, 849–853 (2001)
https://doi.org/10.1063/1.1358017
Mechanism to ensure safety of fission system during launch
AIP Conf. Proc. 552, 854–858 (2001)
https://doi.org/10.1063/1.1358018
Development of core cladding fabrication techniques for phase I fission propulsion systems
AIP Conf. Proc. 552, 859–864 (2001)
https://doi.org/10.1063/1.1358019
Rhenium compatibility with uranium dioxide at elevated temperatures
AIP Conf. Proc. 552, 865–868 (2001)
https://doi.org/10.1063/1.1358020
Sodium heat pipe module test for the SAFE-30 reactor prototype
AIP Conf. Proc. 552, 869–874 (2001)
https://doi.org/10.1063/1.1358021
Mass estimates of very small reactor cores fueled by Uranium-235, U-233 and Cm-245
AIP Conf. Proc. 552, 875–880 (2001)
https://doi.org/10.1063/1.1358022
Numerical simulation of magnetically-guided plasma flows for the design of a fusion propulsion system
AIP Conf. Proc. 552, 900–907 (2001)
https://doi.org/10.1063/1.1358026
Lithium mass flow control for high power Lorentz Force Accelerators
AIP Conf. Proc. 552, 908–915 (2001)
https://doi.org/10.1063/1.1358027
Overview of nuclear MHD power conversion for multi-megawatt electric propulsion
AIP Conf. Proc. 552, 916–922 (2001)
https://doi.org/10.1063/1.1358028
Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD
AIP Conf. Proc. 552, 923–930 (2001)
https://doi.org/10.1063/1.1358029
Design and preliminary testing of a high performance antiproton trap (HiPAT)
AIP Conf. Proc. 552, 931–938 (2001)
https://doi.org/10.1063/1.1358030
High density storage of antimatter for space propulsion applications
AIP Conf. Proc. 552, 939–943 (2001)
https://doi.org/10.1063/1.1358031
Application of nuclear photon engines for deep-space exploration
AIP Conf. Proc. 552, 957–962 (2001)
https://doi.org/10.1063/1.1358034
Concept for a high performance MHD airbreathing—IEC fusion rocket
AIP Conf. Proc. 552, 963–968 (2001)
https://doi.org/10.1063/1.1358035
Thermal emittance measurements on candidate refractory materials for application in nuclear space power systems
Daniel P. Kramer; Donald A. Jaworske; James R. McDougal; Roger G. Miller; Robert A. Booher; Dennis C. McNeil; Edwin I. Howell
AIP Conf. Proc. 552, 979–984 (2001)
https://doi.org/10.1063/1.1358038
Modular Stirling Radioisotope Power System (SRPS) using an advanced heat source
AIP Conf. Proc. 552, 995–997 (2001)
https://doi.org/10.1063/1.1358041
Status update of a free-piston Stirling convertor for radioisotope space power systems
AIP Conf. Proc. 552, 998–1004 (2001)
https://doi.org/10.1063/1.1358042
Power characteristics of a Stirling radioisotope power system over the life of the mission
AIP Conf. Proc. 552, 1011–1016 (2001)
https://doi.org/10.1063/1.1358044
A comparison of Brayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts
AIP Conf. Proc. 552, 1017–1022 (2001)
https://doi.org/10.1063/1.1358045
Effect of inert cover gas on performance of radioisotope Stirling space power system
AIP Conf. Proc. 552, 1033–1040 (2001)
https://doi.org/10.1063/1.1358048
Update of the design of the AMTEC converter for use in AMTEC Radioisotope Power Systems
AIP Conf. Proc. 552, 1047–1054 (2001)
https://doi.org/10.1063/1.1358050
Analysis of a vapor anode, multi-tube, potassium refractory AMTEC converter for space applications
AIP Conf. Proc. 552, 1066–1075 (2001)
https://doi.org/10.1063/1.1358052
Mathematical modeling of the impedance of single and multi-cell AMTEC units
AIP Conf. Proc. 552, 1082–1087 (2001)
https://doi.org/10.1063/1.1358054
Advances in electrode materials for AMTEC
M. A. Ryan; R. M. Williams; L. Lara; B. G. Fiebig; R. H. Cortez; A. K. Kisor; V. B. Shields; M. L. Homer
AIP Conf. Proc. 552, 1088–1093 (2001)
https://doi.org/10.1063/1.1358055
Metallurgical examination of an AMTEC unit
AIP Conf. Proc. 552, 1094–1099 (2001)
https://doi.org/10.1063/1.1358056
Reactivity of thin metal films on sodium beta″ alumina ceramic in high temperature, low pressure sodium vapor
AIP Conf. Proc. 552, 1100–1106 (2001)
https://doi.org/10.1063/1.1358057
High efficiency segmented thermoelectric unicouples
AIP Conf. Proc. 552, 1107–1112 (2001)
https://doi.org/10.1063/1.1358058
Tests of a conductively coupled multi-cell thermionic fuel element
AIP Conf. Proc. 552, 1119–1124 (2001)
https://doi.org/10.1063/1.1358060
Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor
AIP Conf. Proc. 552, 1136–1141 (2001)
https://doi.org/10.1063/1.1358063
Experimental investigation of a thermionic converter with Molybdenum electrodes for low temperature applications
AIP Conf. Proc. 552, 1142–1151 (2001)
https://doi.org/10.1063/1.1358064
Base materials and technologies to maintain long service life and efficiency of thermionic converters and thermionic fuel elements
Yury V. Nikolaev; Anotoly A. Yastrebkov; Alexander S. Gontar; Nikolay V. Lapochkin; Alexander P. Belousenko; David L. Tsetskhladze
AIP Conf. Proc. 552, 1171–1176 (2001)
https://doi.org/10.1063/1.1358068
The balance between SEP and GCR particle fluxes in interplanetary space, depending on solar activity level
AIP Conf. Proc. 552, 1197–1202 (2001)
https://doi.org/10.1063/1.1358072
Lessons learned using COTS electronics for the International Space Station radiation environment
AIP Conf. Proc. 552, 1203–1209 (2001)
https://doi.org/10.1063/1.1358073
Disorder-effects in reduced dimensional and quantum electronics
B. D. Weaver; R. Magno; E. M. Jackson; R. Wilkins; S. Shojah-Ardalan; A. C. Seabaugh; B. Brar; M. O. Manasreh; Y. Berhane
AIP Conf. Proc. 552, 1210–1216 (2001)
https://doi.org/10.1063/1.1358074
Interplanetary crew doses and dose rates for the July 2000 solar particle event
AIP Conf. Proc. 552, 1217–1223 (2001)
https://doi.org/10.1063/1.1358075
Equivalent dose during long-term interplanetary missions depending on solar activity level
AIP Conf. Proc. 552, 1240–1245 (2001)
https://doi.org/10.1063/1.1358079