Skip Nav Destination
Issues
Front Matter for Volume 1552
AIP Conf. Proc. 1552, frontmatter (2013)
https://doi.org/10.1063/v1552.frontmatter
Back Matter for Volume 1552
AIP Conf. Proc. 1552, backmatter (2013)
https://doi.org/10.1063/v1552.backmatter
III. TEMPERATURE SCALES
The role of LATU as national metrology institute of Uruguay and its responsibilities
AIP Conf. Proc. 1552, 112–117 (2013)
https://doi.org/10.1063/1.4819524
Practical limitations of ITS-90 from the mercury triple point to the silver freeze point
AIP Conf. Proc. 1552, 106–111 (2013)
https://doi.org/10.1063/1.4819523
Analysis of the ITS-90 inconsistency in overlap region of the mercury-gallium and the water-argon sub-ranges
AIP Conf. Proc. 1552, 100–105 (2013)
https://doi.org/10.1063/1.4819522
IV. LOW-TEMPERATURE THERMOMETRY
Development of the realization of superfluid transition temperature of helium
AIP Conf. Proc. 1552, 148–152 (2013)
https://doi.org/10.1063/1.4819530
Application of inverse heat conduction problem on temperature measurement
AIP Conf. Proc. 1552, 156–161 (2013)
https://doi.org/10.1063/1.4819532
Use of the finite-element method for a dielectric-constant gas-thermometry experiment
AIP Conf. Proc. 1552, 130–135 (2013)
https://doi.org/10.1063/1.4819527
Development of an adiabatic calorimeter in the range 54K-273K in frame of a scientific collaboration LNE-NIS
AIP Conf. Proc. 1552, 153–155 (2013)
https://doi.org/10.1063/1.4819531
Characteristics of a liquid-helium-free calibration apparatus for cryogenic thermometers
AIP Conf. Proc. 1552, 162–167 (2013)
https://doi.org/10.1063/1.4819533
Investigation of uncertainty components in Coulomb blockade thermometry
O. M. Hahtela; M. Meschke; A. Savin; D. Gunnarsson; M. Prunnila; J. S. Penttilä; L. Roschier; M. Heinonen; A. Manninen; J. P. Pekola
AIP Conf. Proc. 1552, 142–147 (2013)
https://doi.org/10.1063/1.4819529
IX. CALIBRATION METHODS AND UNCERTAINTY
A study about the fitting curves for the calibration of the Pt/Rh family thermocouples in fixed points
AIP Conf. Proc. 1552, 492–497 (2013)
https://doi.org/10.1063/1.4819590
A new calorimeter for the simultaneous calibration of SPRTs and CSPRTs at the triple point of mercury
AIP Conf. Proc. 1552, 486–491 (2013)
https://doi.org/10.1063/1.4819589
A low temperature comparator for calibration of industrial thermometers in the range −190 °C to −25 °C
AIP Conf. Proc. 1552, 480–485 (2013)
https://doi.org/10.1063/1.4819588
Quantifying the calibration uncertainty attributable to thermocouple inhomogeneity
AIP Conf. Proc. 1552, 520–525 (2013)
https://doi.org/10.1063/1.4819595
Estimation of the extrapolation error in the calibration of type S thermocouples
AIP Conf. Proc. 1552, 516–519 (2013)
https://doi.org/10.1063/1.4821394
Self-calibration of a W/Re thermocouple using a miniature Ru-C (1954 °C) eutectic cell
AIP Conf. Proc. 1552, 504–509 (2013)
https://doi.org/10.1063/1.4821392
The reliability of calibration for thermocouples in industry at around 1300 °C
AIP Conf. Proc. 1552, 526–531 (2013)
https://doi.org/10.1063/1.4819596
A robust approach to using of the redundant information in the temperature calibration
AIP Conf. Proc. 1552, 498–503 (2013)
https://doi.org/10.1063/1.4819591
VIII. RESISTANCE THERMOMETRY
Normal and anomalous self-heating in capsule-type resistance thermometers in the range 1 K to 273 K
AIP Conf. Proc. 1552, 451–456 (2013)
https://doi.org/10.1063/1.4819583
Nonlinearity assessment of ASL F900 resistance thermometry bridges
AIP Conf. Proc. 1552, 404–408 (2013)
https://doi.org/10.1063/1.4819574
Characteristics of rhodium-iron resistance thermometers and interpolation properties from 0.65 K to 24.5561 K
AIP Conf. Proc. 1552, 409–413 (2013)
https://doi.org/10.1063/1.4819575
Comparison between classical GUM and Bayesian uncertainty estimation approaches in SPRT calibrations
AIP Conf. Proc. 1552, 439–444 (2013)
https://doi.org/10.1063/1.4819581
Temperature-measurement errors with capsule-type resistance thermometers
AIP Conf. Proc. 1552, 427–432 (2013)
https://doi.org/10.1063/1.4819579
The residual and temperature-dependent resistance of reference-grade platinum wire below 13.8 K
AIP Conf. Proc. 1552, 457–462 (2013)
https://doi.org/10.1063/1.4819584
Strategies for minimising the uncertainty of the SPRT self-heating correction
AIP Conf. Proc. 1552, 433–438 (2013)
https://doi.org/10.1063/1.4821390
Long term stability and hysteresis effects in Pt100 sensors used in industry
AIP Conf. Proc. 1552, 421–426 (2013)
https://doi.org/10.1063/1.4819578
Stability test of industrial platinum resistance thermometers at 450 °C for 1000 hours
AIP Conf. Proc. 1552, 417–420 (2013)
https://doi.org/10.1063/1.4819577
SPRT immersion profiles in a TPW cell with the use of metal bushings
AIP Conf. Proc. 1552, 463–467 (2013)
https://doi.org/10.1063/1.4819585
XV. PHOSPHOR THERMOMETRY
Temperature sensing above 1000 °C using Cr-doped spin-allowed broadband luminescence
AIP Conf. Proc. 1552, 873–878 (2013)
https://doi.org/10.1063/1.4819659
Precision and accuracy of luminescence lifetime-based phosphor thermometry: A case study of Eu(III):YSZ
AIP Conf. Proc. 1552, 885–890 (2013)
https://doi.org/10.1063/1.4819661
Response regime studies on standard detectors for decay time determination in phosphor thermometry
AIP Conf. Proc. 1552, 879–884 (2013)
https://doi.org/10.1063/1.4819660
VII. HIGH TEMPERATURE FIXED POINTS
Towards the development of high temperature comparison artifacts for radiation thermometry
AIP Conf. Proc. 1552, 363–368 (2013)
https://doi.org/10.1063/1.4821388
Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature
AIP Conf. Proc. 1552, 374–379 (2013)
https://doi.org/10.1063/1.4819569
A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90
AIP Conf. Proc. 1552, 352–357 (2013)
https://doi.org/10.1063/1.4819565
Thermal modelling comparing high temperature fixed point measurements by contact and non-contact thermometry
AIP Conf. Proc. 1552, 358–362 (2013)
https://doi.org/10.1063/1.4821387
Measurement of thermodynamic temperature of high temperature fixed points
AIP Conf. Proc. 1552, 329–334 (2013)
https://doi.org/10.1063/1.4819561
Optimization of the thermogauge furnace for realizing high temperature fixed points
AIP Conf. Proc. 1552, 386–391 (2013)
https://doi.org/10.1063/1.4819571
Assigning thermodynamic temperatures to high-temperature fixed-points
AIP Conf. Proc. 1552, 323–328 (2013)
https://doi.org/10.1063/1.4819560
Progress report for the CCT-WG5 high temperature fixed point research plan
AIP Conf. Proc. 1552, 317–322 (2013)
https://doi.org/10.1063/1.4821384
Comparison of three Co-C fixed points constructed using different crucible lining materials
AIP Conf. Proc. 1552, 369–373 (2013)
https://doi.org/10.1063/1.4819568
Construction of high-temperature fixed-point cells for thermodynamic temperature assignment
Y. Yamada; K. Anhalt; M. Battuello; P. Bloembergen; B. Khlevnoy; G. Machin; M. Matveyev; M. Sadli; T. Wang
AIP Conf. Proc. 1552, 335–339 (2013)
https://doi.org/10.1063/1.4821385
Determination of the furnace effect of two high-temperature furnaces on metal-carbon eutectic points
AIP Conf. Proc. 1552, 380–385 (2013)
https://doi.org/10.1063/1.4821389
Two-front melting analyzed in a one-dimensional representation for the eutectic Pt-C
AIP Conf. Proc. 1552, 340–345 (2013)
https://doi.org/10.1063/1.4821386
XVI. NOVEL THERMOMETERS AND FIXED POINTS
Practical acoustic thermometry with acoustic waveguides
AIP Conf. Proc. 1552, 943–948 (2013)
https://doi.org/10.1063/1.4821413
Novel developments in rapid thermal processing (RTP) temperature measurement and control
AIP Conf. Proc. 1552, 909–914 (2013)
https://doi.org/10.1063/1.4819665
Investigation on the Curie temperature of a ferroelectric material as a temperature fixed-point
AIP Conf. Proc. 1552, 937–942 (2013)
https://doi.org/10.1063/1.4819670
I. MEASUREMENT OF THE BOLTZMANN CONSTANT
Internal consistency in the determination of the Boltzmann constant using a quasispherical resonator
AIP Conf. Proc. 1552, 17–22 (2013)
https://doi.org/10.1063/1.4819508
Fixed-path-length cylindrical cavities for redetermining the Boltzmann constant
AIP Conf. Proc. 1552, 11–16 (2013)
https://doi.org/10.1063/1.4819507
The IMERAPlus joint research project for determinations of the Boltzmann constant
J. Fischer; B. Fellmuth; C. Gaiser; T. Zandt; L. Pitre; S. Briaudeau; F. Sparasci; D. Truong; Y. Hermier; R. M. Gavioso; C. Guianvarc'h; P. A. Giuliano Albo; A. Merlone; F. Moro; M. de Podesta; G. Sutton; R. Underwood; G. Machin; D. del Campo; J. Segovia Puras; D. Vega-Maza; J. Petersen; J. Hald; L. Nielsen; S. Valkiers; B. Darquié; C. Bordé; C. Chardonnet; C. Daussy; L. Gianfrani; A. Castrillo; P. Laporta; G. Galzerano
AIP Conf. Proc. 1552, 1–10 (2013)
https://doi.org/10.1063/1.4821367
Johnson-noise thermometry based on a quantized-voltage noise source at NIST
AIP Conf. Proc. 1552, 23–28 (2013)
https://doi.org/10.1063/1.4821368
Development of a quantum-voltage-calibrated noise thermometer at NIM
AIP Conf. Proc. 1552, 29–33 (2013)
https://doi.org/10.1063/1.4821369
Temperature-jump effect for cylindrical resonators with low quality factors
AIP Conf. Proc. 1552, 34–38 (2013)
https://doi.org/10.1063/1.4821370
II. THERMODYNAMIC TEMPERATURE DETERMINATIONS
Room temperature acoustic transducers for high-temperature thermometry
AIP Conf. Proc. 1552, 44–49 (2013)
https://doi.org/10.1063/1.4819513
Improvements to the Johnson noise thermometry system for measurements at 505 - 800 K
AIP Conf. Proc. 1552, 50–55 (2013)
https://doi.org/10.1063/1.4819514
Comparison of laser-based and monochromator-based thermodynamic temperature measurements
AIP Conf. Proc. 1552, 60–64 (2013)
https://doi.org/10.1063/1.4819516
Development of a new radiometer for the thermodynamic measurement of high temperature fixed points
AIP Conf. Proc. 1552, 65–70 (2013)
https://doi.org/10.1063/1.4821372
Thermodynamic temperature measurements of silver freezing point and HTFPs
AIP Conf. Proc. 1552, 56–59 (2013)
https://doi.org/10.1063/1.4821371
X. THERMOCOUPLE THERMOMETRY
Drift and inhomogeneity of Pt/Pd thermocouples exposed to around 1500 °C
AIP Conf. Proc. 1552, 554–559 (2013)
https://doi.org/10.1063/1.4819601
Analysis of inhomogeneity in Au/Pt thermocouples to allow intercomparisons at better than 10 millikelvins
AIP Conf. Proc. 1552, 544–548 (2013)
https://doi.org/10.1063/1.4821395
The contributions to drift of positive and negative thermoelements in type K bare-wire thermocouples
AIP Conf. Proc. 1552, 564–569 (2013)
https://doi.org/10.1063/1.4819603
Self-validating type C thermocouples to 2300 °C using high temperature fixed points
AIP Conf. Proc. 1552, 595–600 (2013)
https://doi.org/10.1063/1.4821396
Oxidation-resisting technology of W-Re thermocouples and their industrial applications
AIP Conf. Proc. 1552, 581–586 (2013)
https://doi.org/10.1063/1.4819606
Thermocouples with improved high-temperature creep property by oxide dispersion strengthening
AIP Conf. Proc. 1552, 538–543 (2013)
https://doi.org/10.1063/1.4819598
Thermoelectric properties of W-Re composite strengthened by nanoparticles of yttrium oxide
AIP Conf. Proc. 1552, 591–594 (2013)
https://doi.org/10.1063/1.4819608
Assessment of tungsten/rhenium thermocouples with metal-carbon eutectic fixed points up to 1500°C
AIP Conf. Proc. 1552, 587–590 (2013)
https://doi.org/10.1063/1.4819607
Thermoelectric homogeneity and stability of platinum-rhodium alloyed thermoelements of different compositions
AIP Conf. Proc. 1552, 532–537 (2013)
https://doi.org/10.1063/1.4819597
Stability of cable thermocouples at the upper temperature limit of their working range
AIP Conf. Proc. 1552, 576–580 (2013)
https://doi.org/10.1063/1.4819605
Pt/Pd thermocouple resilience over 327 operating hours in an industrial calibration laboratory
AIP Conf. Proc. 1552, 549–553 (2013)
https://doi.org/10.1063/1.4819600
The contributions to drift of positive and negative thermoelements in type K MIMS thermocouples
AIP Conf. Proc. 1552, 570–575 (2013)
https://doi.org/10.1063/1.4819604
XVII. THERMOMETRY FOR SPECIAL APPLICATIONS
Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers
AIP Conf. Proc. 1552, 1014–1019 (2013)
https://doi.org/10.1063/1.4819683
Temperature monitoring options available at the Idaho national laboratory advanced test reactor
AIP Conf. Proc. 1552, 970–975 (2013)
https://doi.org/10.1063/1.4819675
HiTeMS: A project to solve high temperature measurement problems in industry
AIP Conf. Proc. 1552, 958–963 (2013)
https://doi.org/10.1063/1.4821414
Phase change references for in-flight recalibration of orbital thermometry
AIP Conf. Proc. 1552, 993–997 (2013)
https://doi.org/10.1063/1.4819679
Applicability of thermal imaging for assessment of energy efficiency in buildings
AIP Conf. Proc. 1552, 1009–1013 (2013)
https://doi.org/10.1063/1.4819682
Response time testing of temperature sensors using loop current step response method
AIP Conf. Proc. 1552, 949–957 (2013)
https://doi.org/10.1063/1.4819672
MetroFission: New high-temperature references and sensors for the nuclear industry
M. Sadli; D. del Campo; M. de Podesta; T. Deuzé; G. Failleau; C. J. Elliott; S. Fourrez; C. García; J. V. Pearce
AIP Conf. Proc. 1552, 1003–1008 (2013)
https://doi.org/10.1063/1.4821417
Thermal testing of undersea oil and gas pipeline insulation
AIP Conf. Proc. 1552, 964–969 (2013)
https://doi.org/10.1063/1.4819674
Statistical relationship between human axillary and forehead temperatures
AIP Conf. Proc. 1552, 981–986 (2013)
https://doi.org/10.1063/1.4819677
Temperature calibration of cryoscopic solutions used in the milk industry by adiabatic calorimetry
AIP Conf. Proc. 1552, 998–1002 (2013)
https://doi.org/10.1063/1.4821416
Temperature measurement in flow pipes: Comparison with single Pt-100 and multisensors
AIP Conf. Proc. 1552, 987–992 (2013)
https://doi.org/10.1063/1.4819678
XIV. TEMPERATURE CONTROL
Ultra-high temperature isothermal furnace liners (IFLS) for copper freeze point cells
AIP Conf. Proc. 1552, 851–856 (2013)
https://doi.org/10.1063/1.4819655
Improvement in temperature stability of standard resistors using heat pipe technology
AIP Conf. Proc. 1552, 840–844 (2013)
https://doi.org/10.1063/1.4819653
Temperature mapping of temperature controlled enclosures (−70 °C to 180 °C): Pitfalls and recommendations
AIP Conf. Proc. 1552, 857–862 (2013)
https://doi.org/10.1063/1.4819656
XI. RADIATION THERMOMETRY-STANDARDS
A low-temperature blackbody source from −30 °C to 30 °C for industrial calibration
AIP Conf. Proc. 1552, 678–681 (2013)
https://doi.org/10.1063/1.4819623
High temperature blackbody BB2000/40 for calibration of radiation thermometers and thermocouple
AIP Conf. Proc. 1552, 660–665 (2013)
https://doi.org/10.1063/1.4819620
An InGaAs detector based radiation thermometer and fixed-point blackbodies for temperature scale realization at NIM
AIP Conf. Proc. 1552, 643–648 (2013)
https://doi.org/10.1063/1.4819617
Radiation thermometry standards at NMIJ from −30 °C to 2800 °C
AIP Conf. Proc. 1552, 666–671 (2013)
https://doi.org/10.1063/1.4821400
A transfer function approach to studying the size-of-source and distance effects in radiation thermometry
AIP Conf. Proc. 1552, 672–677 (2013)
https://doi.org/10.1063/1.4819622
Blackbody radiation sources for the IR spectral range
AIP Conf. Proc. 1552, 654–659 (2013)
https://doi.org/10.1063/1.4819619
A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source
AIP Conf. Proc. 1552, 682–687 (2013)
https://doi.org/10.1063/1.4819624
Radiometric characterization of a high temperature blackbody in the visible and near infrared
AIP Conf. Proc. 1552, 607–612 (2013)
https://doi.org/10.1063/1.4819611
Uncertainty due to non-linearity in radiation thermometers calibrated by multiple fixed points
AIP Conf. Proc. 1552, 688–692 (2013)
https://doi.org/10.1063/1.4821401
Dealing with the size-of-source effect in the calibration of direct-reading radiation thermometer
AIP Conf. Proc. 1552, 619–624 (2013)
https://doi.org/10.1063/1.4819613
VI. METAL FIXED POINTS
A new compact fixed-point blackbody furnace
AIP Conf. Proc. 1552, 300–304 (2013)
https://doi.org/10.1063/1.4821382
Electrical effects in measurements at the silver point using high temperature SPRTs
AIP Conf. Proc. 1552, 271–276 (2013)
https://doi.org/10.1063/1.4819552
Measurement of the in freezing-point temperature: Effect of the liquid-solid interface structure
AIP Conf. Proc. 1552, 243–248 (2013)
https://doi.org/10.1063/1.4819547
A coupled heat and mass transfer model of pure metal freezing using comsol multiphysics{trade mark, serif}
AIP Conf. Proc. 1552, 289–294 (2013)
https://doi.org/10.1063/1.4819555
Design, construction and test of mercury thermometric cell in CENAMEP AIP
AIP Conf. Proc. 1552, 232–236 (2013)
https://doi.org/10.1063/1.4819545
XIII. INTERNATIONAL COMPARISONS
Comparison of mercury triple point cells assembled by TUBITAK UME and CEM
AIP Conf. Proc. 1552, 782–785 (2013)
https://doi.org/10.1063/1.4821407
International comparison of resistance thermometers between NMIs from Spain, Mexico and Andean countries
D. del Campo; V. C. Ruiz; E. Méndez-Lango; L. Córdova; E. von Borries; C. A. Sánchez; A. Arévalo; B. Aguilera; E. Guillén; C. Cabrera; L. Quintana
AIP Conf. Proc. 1552, 802–807 (2013)
https://doi.org/10.1063/1.4819646
International comparison of platinum resistance thermometers between Chile and Ecuador
AIP Conf. Proc. 1552, 819–824 (2013)
https://doi.org/10.1063/1.4819649
Comparison of the realizations of the ITS-90 over the range from 83.8058 K to 692.677 K
J. Bojkovski; N. Arifović; A. K. Doğan; M. Kalemci; O. Petrusova; S. Simić; T. Veliki; D. Zvizdić; J. Drnovšek
AIP Conf. Proc. 1552, 813–818 (2013)
https://doi.org/10.1063/1.4819648
Bilateral comparison of tin fixed point cells between INMETRO and NPL
AIP Conf. Proc. 1552, 777–781 (2013)
https://doi.org/10.1063/1.4821406
Realization of the WC-C peritectic fixed point at NIM and NMIJ
AIP Conf. Proc. 1552, 791–796 (2013)
https://doi.org/10.1063/1.4821409
Comparison of Co-C eutectic fixed-point cells between VNIIM and VNIIOFI
AIP Conf. Proc. 1552, 771–776 (2013)
https://doi.org/10.1063/1.4821405
Comparison of realizations of Re-C fixed points filled and measured at NPL and NRC
AIP Conf. Proc. 1552, 797–801 (2013)
https://doi.org/10.1063/1.4819645
Bilateral ITS-90 comparison at WC-C peritectic fixed point between NIM and NPL
AIP Conf. Proc. 1552, 786–790 (2013)
https://doi.org/10.1063/1.4821408
XII. RADIATION THERMOMETRY-EMISSIVITY, APPLICATIONS, AND MATERIAL PROPERTIES
Sensitivity of blackbody effective emissivity to wavelength and temperature: By genetic algorithm
AIP Conf. Proc. 1552, 716–721 (2013)
https://doi.org/10.1063/1.4821403
Emissivity properties of silicon wafers and their application to radiation thermometry
AIP Conf. Proc. 1552, 710–715 (2013)
https://doi.org/10.1063/1.4819629
Pyrometry of materials with changing, spectrally-dependent emissivity - Solid and liquid metals
AIP Conf. Proc. 1552, 734–739 (2013)
https://doi.org/10.1063/1.4819633
Radiation thermometry for remote sensing at PTB
AIP Conf. Proc. 1552, 722–727 (2013)
https://doi.org/10.1063/1.4819631
The influence of the spectral emissivity of flat-plate calibrators on the calibration of IR thermometers
AIP Conf. Proc. 1552, 752–756 (2013)
https://doi.org/10.1063/1.4819636
A simple method for the measurement of reflective foil emissivity
AIP Conf. Proc. 1552, 740–745 (2013)
https://doi.org/10.1063/1.4819634
Comparison of the emissivity uniformity of several blackbody cavities
AIP Conf. Proc. 1552, 757–761 (2013)
https://doi.org/10.1063/1.4819637
A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM
AIP Conf. Proc. 1552, 728–733 (2013)
https://doi.org/10.1063/1.4821404
Measurements of infrared spectral directional emittance at NIST - A status update
AIP Conf. Proc. 1552, 746–751 (2013)
https://doi.org/10.1063/1.4819635
Normal spectral emissivity near 680 nm at melting and in the liquid phase for 18 metallic elements
AIP Conf. Proc. 1552, 704–709 (2013)
https://doi.org/10.1063/1.4819628
V. LOW-TEMPERATURE/WATER FIXED POINTS
The β - γ transition of oxygen as a secondary fixed point of the ITS-90
AIP Conf. Proc. 1552, 204–208 (2013)
https://doi.org/10.1063/1.4819540
Comparison of the triple-point temperatures of , and normal Ne
AIP Conf. Proc. 1552, 180–185 (2013)
https://doi.org/10.1063/1.4821376