Phase-contrast X-ray imaging (PCXI) techniques employ both X-ray refraction and attenuation to generate image contrast, and are therefore capable of forming high-quality images of weakly attenuating samples, for example, soft-tissues in mammography. Propagation-based phase-contrast X-ray imaging (PB-PCXI) is an especially simple PCXI technique as it requires no additional precision optics in the experimental set-up, and hence can be easily implemented in numerous disciplines. We recently published a PB-PCXI algorithm capable of extracting the real, δ, and imaginary, β, refractive index components of composite materials within an unknown sample [1]. This was previously applied to PB-PCXI data collected using a synchrotron facility where the X-ray wavefield was monochromatic, highly coherent, and paraxial. Within this work, we have validated, and further extended, this approach by applying it to PB-PCXI data collected using a conventional laboratory X-ray source that produces a polychromatic, relatively temporally incoherent and divergent wavefield. We demonstrate that our previously published phase and attenuation extraction algorithm can be applied to biological tissue sample data collected using such a laboratory X-ray source, thereby broadening the applicability of this algorithm. A link to a repository is provided, where a Python3 script implementing this approach can be downloaded.

1.
S. J.
Alloo
,
D. M.
Paganin
,
K. S.
Morgan
,
T. E.
Gureyev
,
S. C.
Mayo
,
S.
Mohammadi
,
D.
Lockie
,
R. H.
Menk
,
F.
Arfelli
,
F.
Zanconati
, and
G.
Tromba
, “
Tomographic phase and attenuation extraction for a sample composed of unknown materials using x-ray propagation-based phase-contrast imaging
,”
Optics Letters
47
,
1945
1948
(
2022
).
2.
D. M.
Paganin
,
Coherent X-ray Optics
(
Oxford University Press
,
2006
).
3.
E.
Förster
,
K.
Goetz
, and
P.
Zaumseil
, “
Double crystal diffractometry for the characterization of targets for laser fusion experiments
,”
Kristall und Technik
15
,
937
945
(
1980
).
4.
V. N.
Ingal
and
E. A.
Beliaevskaya
, “
X-ray plane-wave topography observation of the phase contrast from a non-crystalline object
,”
Journal of Physics D: Applied Physics
28
,
2314
2317
(
1995
).
5.
K.
Goetz
,
M. P.
Kalashnikov
,
Y. A.
Mikhăılov
,
G. V.
Sklizkov
,
S. I.
Fedotov
,
E.
Foerster
, and
P.
Zaumseil
, “
Measurements of the parameters of shell targets for laser thermonuclear fusion using an x-ray schlieren method
,”
Soviet Journal of Quantum Electronics
9
,
607
610
(
1979
).
6.
D.
Chapman
,
W.
Thomlinson
,
R. E.
Johnston
,
D.
Washburn
,
E.
Pisano
,
N.
Gmür
,
Z.
Zhong
,
R.
Menk
,
F.
Arfelli
, and
D.
Sayers
, “
Diffraction enhanced x-ray imaging
,”
Physics in Medicine & Biology
42
,
2015
2025
(
1997
).
7.
A.
Olivo
,
F.
Arfelli
,
G.
Cantatore
,
R.
Longo
,
R. H.
Menk
,
S.
Pani
,
M.
Prest
,
P.
Poropat
,
L.
Rigon
,
G.
Tromba
,
E.
Vallazza
, and
E.
Castelli
, “
An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field
,”
Medical Physics
28
,
1610
1619
(
2001
).
8.
A.
Olivo
, “
Edge-illumination x-ray phase-contrast imaging
,”
Journal of Physics: Condensed Matter
33
,
363002
(
2021
).
9.
A.
Momose
,
S.
Kawamoto
,
I.
Koyama
,
Y.
Hamaishi
,
K.
Takai
, and
Y.
Suzuki
, “
Demonstration of X-ray Talbot interferometry
,”
Japanese Journal of Applied Physics
42
,
L866
(
2003
).
10.
C.
David
,
B.
Nöhammer
,
H.
Solak
, and
E.
Ziegler
, “
Differential x-ray phase contrast imaging using a shearing interferometer
,”
Applied Physics Letters
81
,
3287
3289
(
2002
).
11.
F.
Pfeiffer
,
T.
Weitkamp
,
O.
Bunk
, and
C.
David
, “
Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources
,”
Nature Physics
2
,
258
261
(
2006
).
12.
S.
Bérujon
,
E.
Ziegler
,
R.
Cerbino
, and
L.
Peverini
, “
Two-dimensional x-ray beam phase sensing
,”
Physical Review Letters
108
,
158102
(
2012
).
13.
K. S.
Morgan
,
D. M.
Paganin
, and
K. K.
Siu
, “
X-ray phase imaging with a paper analyzer
,”
Applied Physics Letters
100
,
124102
(
2012
).
14.
M.-C.
Zdora
,
P.
Thibault
,
T.
Zhou
,
F. J.
Koch
,
J.
Romell
,
S.
Sala
,
A.
Last
,
C.
Rau
, and
I.
Zanette
, “
X-ray phase-contrast imaging and metrology through unified modulated pattern analysis
,”
Physical Review Letters
118
,
203903
(
2017
).
15.
S.
Berujon
and
E.
Ziegler
, “
X-ray multimodal tomography using speckle-vector tracking
,”
Physical Review Applied
5
,
044014
(
2016
).
16.
A.
Snigirev
,
I.
Snigireva
,
V.
Kohn
,
S.
Kuznetsov
, and
I.
Schelokov
, “
On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation
,”
Review of Scientific Instruments
66
,
5486
5492
(
1995
).
17.
S. W.
Wilkins
,
T. E.
Gureyev
,
D.
Gao
,
A.
Pogany
, and
A. W.
Stevenson
, “
Phase-contrast imaging using polychromatic hard x-rays
,”
Nature
384
,
335–338
(
1996
).
18.
K. A.
Nugent
,
T. E.
Gureyev
,
D. J.
Cookson
,
D. M.
Paganin
, and
Z.
Barnea
, “
Quantitative phase imaging using hard x rays
,”
Physical Review Letters
77
,
2961
2964
(
1996
).
19.
D.
Paganin
,
S. C.
Mayo
,
T. E.
Gureyev
,
P. R.
Miller
, and
S. W.
Wilkins
, “
Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object
,”
Journal of Microscopy
206
,
33
40
(
2002
).
20.
M. A.
Beltran
,
D. M.
Paganin
,
K.
Uesugi
, and
M. J.
Kitchen
, “
2D and 3D x-ray phase retrieval of multi-material objects using a single defocus distance
,”
Optics Express
18
,
6423
6436
(
2010
).
21.
M. A.
Beltran
,
D. M.
Paganin
,
K. K. W.
Siu
,
A.
Fouras
,
S. B.
Hooper
,
D. H.
Reser
, and
M. J.
Kitchen
, “
Interface-specific x-ray phase retrieval tomography of complex biological organs
,”
Physics in Medicine & Biology
56
,
7353
7369
(
2011
).
22.
Ya. I.
Nesterets
and
T. E.
Gureyev
, “
Noise propagation in x-ray phase-contrast imaging and computed tomography
,”
Journal of Physics D: Applied Physics
47
,
105402
(
2014
).
23.
T. E.
Gureyev
,
S. C.
Mayo
,
Ya. I.
Nesterets
,
S.
Mohammadi
,
D.
Lockie
,
R. H.
Menk
,
F.
Arfelli
,
K. M.
Pavlov
,
M. J.
Kitchen
,
F.
Zanconati
,
C.
Dullin
, and
G.
Tromba
, “
Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography
,”
Journal of Physics D: Applied Physics
47
,
365401
(
2014
).
24.
M. J.
Kitchen
,
G. A.
Buckley
,
T. E.
Gureyev
,
M. J.
Wallace
,
N.
Andres-Thio
,
K.
Uesugi
,
N.
Yagi
, and
S. B.
Hooper
, “
CT dose reduction factors in the thousands using x-ray phase contrast
,”
Scientific Reports
7
,
15953
(
2017
).
25.
M. A.
Beltran
,
D. M.
Paganin
, and
D.
Pelliccia
, “
Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation
,”
Journal of Optics
20
,
055605
(
2018
).
26.
T. E.
Gureyev
,
A. W.
Stevenson
,
D. M.
Paganin
,
T.
Weitkamp
,
A.
Snigirev
,
I.
Snigireva
, and
S. W.
Wilkins
, “
Quantitative analysis of two-component samples using in-line hard x-ray images
,”
Journal of Synchrotron Radiation
9
,
148
153
(
2002
).
27.
D. A.
Thompson
,
Y. I.
Nesterets
,
K. M.
Pavlov
, and
T. E.
Gureyev
, “
Fast three-dimensional phase retrieval in propagation-based x-ray tomography
,”
Journal of Synchrotron Radiation
26
,
825
838
(
2019
).
28.
M. R.
Teague
, “
Deterministic phase retrieval: a Green’s function solution
,”
Journal of the Optical Society of America
73
,
1434
1441
(
1983
).
29.
D. A.
Thompson
,
Y. I.
Nesterets
,
K. M.
Pavlov
, and
T. E.
Gureyev
, “
Three-dimensional contrast transfer functions in propagation-based tomography
,”
arXiv preprint
arXiv:2206.02688 (
2022
).
30.
G. R.
Myers
,
S. C.
Mayo
,
T. E.
Gureyev
,
D. M.
Paganin
, and
S. W.
Wilkins
, “
Polychromatic cone-beam phase-contrast tomography
,”
Physical Review A
76
,
045804
(
2007
).
31.
T. E.
Gureyev
,
Y. I.
Nesterets
,
D. M.
Paganin
,
A.
Pogany
, and
S. W.
Wilkins
, “
Linear algorithms for phase retrieval in the Fresnel region. 2. Partially coherent illumination
,”
Optics Communications
259
,
569
580
(
2006
).
32.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
U.S. Dept. Of Commerce, National Bureau of Standards
,
1972
).
33.
L. C. P.
Croton
,
G.
Ruben
,
K. S.
Morgan
,
D. M.
Paganin
, and
M. J.
Kitchen
, “
Ring artifact suppression in x-ray computed tomography using a simple, pixel-wise response correction
,”
Optics Express
27
,
14231
14245
(
2019
).
34.
W.
Van Aarle
,
W. J.
Palenstijn
,
J.
De Beenhouwer
,
T.
Altantzis
,
S.
Bals
,
K. J.
Batenburg
, and
J.
Sijbers
, “
The ASTRA toolbox: A platform for advanced algorithm development in electron tomography
,”
Ultramicroscopy
157
,
35
47
(
2015
).
36.
S.
Brennan
and
P. L.
Cowan
, “
A suite of programs for calculating x-ray absorption, reflection, and diffraction performance for a variety of materials at arbitrary wavelengths
,”
Review of Scientific Instruments
63
,
850
853
(
1992
).
37.
T. E.
Gureyev
,
A. W.
Stevenson
,
Y. I.
Nesterets
, and
S. W.
Wilkins
, “
Image deblurring by means of defocus
,”
Optics Communications
240
,
81
88
(
2004
).
38.
A. K.
Hunter
and
W.
McDavid
, “
Characterization and correction of cupping effect artefacts in cone beam CT
,”
Dentomaxillofacial Radiology
41
,
217
223
(
2012
).
This content is only available via PDF.
Published open access through an agreement with University of Canterbury Department of Physics