Scanning Transmission X-ray microscopy (STXM) is a synchrotron-based soft X-ray spectra-microscopic technique which provides chemically selective imaging via spatially resolved X-ray absorption spectroscopy. In-situ STXM of electrocatalysts provides imaging and spectroscopic information at different time / voltage points in the electrochemical process, which helps to understand the changes of morphology and chemistry that occur under reaction conditions. We have developed in-situ flow electrochemical devices with an electrolyte thickness<2 µm which allow STXM measurements while controlling the electrochemical reaction environment, thus providing a platform for in-situ studies of electrochemical oxidation and reduction processes. Here we report results of in-situ STXM studies on electrochemically generated Cu based catalysts for the CO2 reduction reaction (CO2R). Cu 2p STXM spectromicroscopy was successfully used to monitor the morphology and oxidation state changes in the initially formed Cu/Cu2O nano­ particles as the potential was changed from open circuit to values where CO2 reduction occurs. Ex-situ ptychography was also conducted on the same catalyst nanoparticles to provide spectra-microscopy images with similar chemical analysis but improved spatial resolution.

1.
A.P.
Hitchcock
, Soft X-ray Imaging and Spectromicroscopy in Vol.
2
,
Handbook on Nanoscopy
, eds.
G.
Van Tendeloo
,
D.
Van Dyck
and
S. J.
Pennycook
, pp
745
791
(
2012
,
Wiley
).
2.
AP.
Hitchcock
,
J. Electron Spectroscopy and Related Phenomena
200
,
49
63
(
2015
).
3.
J.
Park
,
S.-J.
Kim
,
K.
Kim
,
Y.
Jeoun
,
S.-H.
Yu
,
C.
Kim
,
Y.-E.
Sung
, and
E.J.
Cairns
,
Nano Energy
100
,
107446
(
2022
).
4.
T.
Sun
,
G.
Sun
,
F.
Yu
,
Y.
Mao
,
R.
Tai
,
X.
Zhang
,
G.
Shao
,
Z.
Wang
,
J.
Wang
, and
J.
Zhou
,
ACS Nano
15
,
1475
1485
(
2021
).
5.
C.
Zhang
,
L.
Shahcheraghi
,
F.
Ismail
,
H.
Eraky
,
H.
Yuan
,
A.P.
Hitchcock
, and
D.
Higgins
,
ACS Catal.
12
,
8746
8760
(
2022
).
6.
J.T.
Mefford
,
A.R.
Akbashev
,
M.
Kang
,
C.L.
Bentley
,
W.E.
Gent
,
H.D.
Deng
,
D.H.
Alsem
,
Y.-S.
Yu
,
N.J.
Salmon
,
D.A.
Shapiro
,
P.R.
Unwin
, and
W.C.
Chueh
,
Nature
593
,
67
73
(
2021
).
7.
J.
Lim
,
Y.
Li
,
D.H.
Alsem
,
H.
So
,
S.C.
Lee
,
P.
Bai
,
D.A
Cogswell
,
X.
Liu
,
N.
Jin
,
Y.
Yu
,
N.J.
Salmon
,
D.A.
Shapiro
,
M.Z.
Bazant
,
T.
Tyliszczak
, and
W.C.
Chueh
,
Science
353
,
566
571
(
2016
).
8.
S.H.
Lee
,
J.C.
Lin
,
M.
Farmand
,
A.T.
Landers
,
J.T.
Feaster
,
J.E. Aviles
Acosta
,
J.W.
Beeman
,
Y.
Ye
,
J.
Yano
,
A
Mehta
,
R.C.
Davis
,
T.F.
Jaramillo
,
C.
Hahn
, and
W.S.
Drisdell
,
J. Am. Chem. Soc.
143
,
588
592
(
2021
).
9.
T.T.H.
Hoang
,
S.
Ma
,
J.T.
Gold
,
P.J.A.
Kenis
, and
A.A.
Gewirth
,
ACS Catal.
7
,
3313
3321
(
2017
).
10.
J.-J.
Velasco-Velez
,
R.V.
Mom
,
L.-E.
Sandoval-Diaz
,
L. J.
Falling
,
C.-H.
Chuang
,.
Gao
,
T.E.
Jones
,
Q.
Zhu
,
R.a
Arrigo
,
B. Roldan
Cuenya
,
A
Knop-Gericke
,
T.
Lunkenbein
, and
R.
Schlogl
,
ACS Energy Letters
5
,
2106
2111
(
2020
).
11.
N.
Mille
,
H.
Yuan
,
J.
Vijayakumar
,
S.
Stanescu
,
S.
Swaraj
,
K.
Desjardins
,
V.
Favre-Nicolin
,
R.
Belkhou
and
A.P.
Hitchcock
,
Communication Materials
3
,
8
(
2022
).
12.
P.
Ingino
et al,
Scientific Reports, in preparation.
13.
K.V.
Kaznatcheev
,
Ch.
Karunakaran
,
U.D.
Lanke
,
S.G.
Urquhart
,
M.
Obst
, and
AP.
Hitchcock
,
Nuclear Instruments and Methods in Physics Research Section A
582
,
96
99
(
2007
).
14.
A.L.D.
Kilcoyne
,
T.
Tyliszczak
,
W.F.
Steele
,
S.
Fakra
,
P.
Hitchcock
,
K.
Franck
,
E.
Anderson
,
B.
Harteneck
,
E.G.
Rightor
,
G.E.
Mitchell
,
A.P.
Hitchcock
,
L.
Yang
,
T.
Warwick
, and
H.
Ade
,
J Synchrotron Rad
10
,
125
136
(
2003
).
15.
A.P.
Hitchcock
,
C.
Zhang
,
H.
Eraky
,
L.
Shahcheraghi
,
F.
Ismail
, and
D.
Higgins
,
Microsc Microanal
27
,
59
60
(
2021
).
16.
V.
Prabu
,
M.
Obst
,
H.
Hosseinkhannazer
,
M.
Reynolds
,
S.
Rosendahl
,
J.
Wang
, and
A.P.
Hitchcock
,
Rev. Scientific Instruments
89
,
063702
(
2018
).
17.
C.
Jacobsen
,
S.
Wirick
,
G.
Flynn
, and
C.
Zimba
,
J. Microsc.
197
,
173
184
(
2000
).
18.
AP.
Hitchcock
.
aXis2000 is written in Interactive Data Language (IDL
). It is available free for noncommercial use from http://unicom.mcmaster.ca/aXis2000.html (accessed June 28, 2022).
19.
T.N.
Koprinarov
,
A.P.
Hitchcock
,
C.T.
McCrory
, and
R.F.
Childs
,
J. Phys. Chem. B
106
,
5358
5364
(
2002
).
20.
D.A.
Shapiro
,
Y.-S.
Yu
,
T.
Tyliszczak
,
J.
Cabana
,
R.
Celestre
,
W.
Chao
,
K.
Kaznatcheev
,
A.L.D.
Kilcoyne
,
F.
Maia
,
S.
Marchesini
,
Y.S.
Meng
,
T.
Warwick
,
L.L.
Yang
, and
H.A.
Padmore
,
Nature Photon
8
,
765
769
(
2014
).
21.
22.
N.
Banterle
,
K.H.
Bui
,
E.A.
Lemke
and
M.
Beck
,
J. Struct. Biol.
183
,
363
367
(
2013
).
23.
D.
Guay
,
J.
Stewart-Ornstein
,
X.
Zhang
and
AP.
Hitchcock
,
Analytical Chemistry
77
,
3479
3487
(
2005
).
24.
M.
Nagasaka
and
N.
Kosugi
,
Chemistry Letters
50
,
956
964
(
2021
).
This content is only available via PDF.