The central Mediterranean during summer 2021 has been characterized by synoptic conditions leading to an extended period with dust transport from the Sahara desert. In particular, very stable and persistent conditions with elevated values of the aerosol optical depth occurred in the second half of June and early July. In this study we integrate ground-based observations to determine the atmospheric conditions and derive the radiative effect produced by the Saharan dust aerosol at the surface in the IR spectral region. As shown by previous studies, desert dust produces a non negligible radiative effect in the IR, which partly offsets that acting in the solar spectral range. The determination of the surface radiative effect requires that the IR irradiance without aerosol is known. The summer 2021 dataset for Lampedusa has been analyzed in order to determine the downwelling IR irradiance without Saharan dust by means of an empirical formula. The application of this formula has allowed to reliably determine the downwelling IR irradiance without dust with an estimated accuracy of about 3 Wm−2; thus, the IR radiative effect was calculated as the difference between the measured irradiance and that estimated with the empirical formula.

The mean value of the IR radiative effect (ARF) is 13.4 Wm−2, producing a radiative effect efficiency (FE), i.e. the radiative effect per unit optical depth, of 26.3 Wm−2. The mean estimated uncertainty on ARF is about 30%. We also used MODTRAN6 radiative transfer model to calculate the IR radiative effect in a selected case characterized by high aerosol optical depth. The radiative effect obtained in the selected case is in good agreement with that derived with the empirical method.

1.
D.
Meloni
,
A.
di Sarra
,
F.
Monteleone
,
G.
Pace
,
S.
Piacentino
, and
D.
Sferlazzo
, “
Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa
,”
Atmos. Res.
88
,
134
148
(
2008
).
2.
J.
Gómez-Amo
,
V.
Pinti
,
T.
Di Iorio
,
A.
di Sarra
,
D.
Meloni
,
S.
Becagli
,
V.
Bellantone
,
M.
Cacciani
,
D.
Fuà
, and
M.
Perrone
, “
The June 2007 Saharan dust event in the central Mediterranean: Observations and radiative effects in marine, urban, and sub-urban environments
,”
Atmos. Environ.
45
,
5385
5393
(
2011
).
3.
J.
Gómez-Amo
,
A.
di Sarra
, and
D.
Meloni
, “
Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust
,”
Atmos. Environ.
98
,
331
336
(
2014
).
4.
A.
di Sarra
,
C.
Di Biagio
,
D.
Meloni
,
F.
Monteleone
,
G.
Pace
,
S.
Pugnaghi
, and
D.
Sferlazzo
, “
Shortwave and longwave radiative effects of the intense Saharan dust event of 25–26 March 2010 at Lampedusa (Mediterranean Sea
),”
J. Geophys. Res. Atmos.
116
(
2011
).
5.
D.
Meloni
,
A.
di Sarra
,
G.
Brogniez
,
C.
Denjean
,
L.
De Silvestri
,
T.
Di Iorio
,
P.
Formenti
,
J. L.
Gómez-Amo
,
J.
Gröbner
,
N.
Kouremeti
,
G.
Liuzzi
,
M.
Mallet
,
G.
Pace
, and
D. M.
Sferlazzo
, “
Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa
,”
Atmos. Chem. Phys.
18
,
4377
4401
(
2018
).
6.
D.
Meloni
,
W.
Junkermann
,
A.
di Sarra
,
M.
Cacciani
,
L.
De Silvestri
,
T.
Di Iorio
,
V.
Estellés
,
J. L.
Gómez-Amo
,
G.
Pace
, and
D. M.
Sferlazzo
, “
Altitude-resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily cooling in the dust layer
,”
J. Geophys. Res. Atmos.
120
,
3386
3407
(
2015
).
7.
G.
Pace
,
A.
di Sarra
,
D.
Meloni
,
S.
Piacentino
, and
P.
Chamard
, “
Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types
,”
Atmos. Chem. Phys.
6
,
697
713
(
2006
).
8.
A.
Berk
,
P.
Conforti
,
R.
Kennett
,
T.
Perkins
,
F.
Hawes
, and
J.
van den Bosch
, “
MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code
,”
6th WHISPERS.
9.
D. M.
Giles
,
B. N.
Holben
,
T. F.
Eck
,
A.
Smirnov
,
A.
Sinyuk
,
J.
Schafer
,
M. G.
Sorokin
, and
I.
Slutsker
, “
Aerosol Robotic Network (AERONET) Version 3 Aerosol Optical Depth and Inversion Products
,”
AGUFM
,
2017
,
A11O
01
(
2017
).
10.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
,
Y.
Zhu
,
M.
Chelliah
,
W.
Ebisuzaki
,
W.
Higgins
,
J.
Janowiak
,
K. C.
Mo
,
C.
Ropelewski
,
J.
Wang
,
A.
Leetmaa
,
R.
Reynolds
,
R.
Jenne
, and
D.
Joseph
, “
The NCEP/NCAR 40-Year Reanalysis Project
,”
Bull. Amer. Meteor. Soc.
77
,
437
472
(
1996
).
11.
L.
Gumley
,
J.
Descloitres
, and
J.
Schmaltz
, “
Creating Reprojected True Color MODIS Images: A Tutorial
,” (
2003
).
12.
C.
Ruckstuhl
,
R.
Philipona
,
J.
Morland
, and
A.
Ohmura
, “
Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes
,”
J. Geophys. Res. Atmos.
112
(
2007
).
13.
A. F.
Stein
,
R. R.
Draxler
,
G.
Rolph
,
B.
Stunder
,
M. D.
Cohen
, and
F.
Ngan
, “
NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System
,”
Bull. Amer. Meteor. Soc.
96
,
2059
2077
(
2015
).
This content is only available via PDF.