The thermocompression molding process allows composites to be made with longer fibers compared to injection molding and extrusion. However, during thermo-compression molding fiber-reinforced composites are exposed to complex effects, which can lead to specific fiber orientation/distribution and therefore affect the mechanical properties. The aim of this work is to study the effect of fiber orientation on the mechanical properties of the long-glass-fiber-reinforced polypropylene (GF50-PP) composite produced by the thermocompression process. Moreover, due to the application of this composite in cold liquid gas storage, it is interesting to study this effect under cryogenic conditions. In this study, composite plates of GF50-PP were cut to analyze the effect of fiber orientations: 0°, 45°, and 90° with respect to the Mold Flow Direction (MFD). After microstructural observations by SEM microscopy and physico-chemical analysis, the mechanical behavior of GF50-PP samples was examined at monotonic tensile loading and tension-tension fatigue at two loading temperatures of 20°C and -70 °C. The results of the tensile tests revealed that the values of stress at break were almost similar at 20°C and -70°C for different fiber orientations of 0°, 45° and 90° and that the temperature effect for the two test conditions is almost insignificant. The tensile-tension fatigue tests at 20°C show the significant effect of the orientation of the fibers when the amplitude of deformation is important. On the other hand, when the amplitude is small, this effect is negligible. In this case, all samples exhibit almost the same behavior. However, during fatigue tests at -70 ° C (cryogenic temperature), the material shows almost uniform linear behavior, but still sensitive to the orientation of the fibers.

1.
D.
Peled
,
V.
Pratt
, and
G.
Holzmann
, “
Report documentation page,”
vol.
298
, pp.
405
405
,
1997
.
2.
M.
Jawaid
,
M.
Thariq
and
Naheed
Saba
,
Structural Health Monitoring of Biocomposites, Fibre-Reinforced
Composites and Hybrid Composites
(
Woodhead Publishing
,
2019
).
3.
F.
Kun
,
S.
Zapperi
, and
H. J.
Herrmann
,
The
Eu
. “
Damage in fiber bundle models
”,
Phys. J. B -Condensed Matter and Complex Sys Eur. Phys. J. B
, Vol.
17
, pp.
269
279
,
2000
.
4.
J.
Fitoussi
,
M.
Bocquet
, and
F.
Meraghni
, “
Effect of the matrix behavior on the damage of ethylene– propylene glass fiber reinforced composite subjected to high strain rate tension
”,
Composites: Part B
, Vol.
45
,
1181
1191
,
2013
.
5.
Z.
Jendli
,
F.
Meraghni
,
J.
Fitoussi
, and
D.
Baptiste
, “
Multi-scales modelling of dynamic behavior for discontinuous fibre SMC composites
,”
Compos. Sci. Technol.
, Vol.
69
, no.
1
,
2009
.
6.
M.
Shirinbayan
,
J.
Fitoussi
,
F.
Meraghni
,
B.
Surowiec
,
M.
Bocquet
and
A.
Tcharkhtchi
, “
High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension
Composites Part B: Eng.
vol.
82
,
30
41
,
2015
.
7.
C.
Priem
,
R.
Othman
,
P.
Rozycki
, and
D.
Guillon
, “
Experimental investigation of the crash energy absorption of 2.5 D-braided thermoplastic composite tubes
”,
Composite structures
, Vol.
116
,
814
826
,
2014
.
8.
M.
Jawaid
,
M.
Thariq
and
Naheed
Saba
,
Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid
,
Woodhead Publishing
,
2018
.
9.
M.
Kaminski
et al., “
Fatigue damage modeling of composite structures: the ONERA viewpoint
” in
J. AerospaceLab 09-06
, pp.
1
12
,
2015
.
10.
M.
Kästner
,
M.
Obst
,
J.
Brummund
,
K.
Thielsch
, and
V.
Ulbricht
, “
Inelastic material behavior of polymers-Experimental characterization, formulation and implementation of a material model
,”
Mech. Mater.
, vol.
52
, pp.
40
57
, Sep.
2012
.
11.
J. S.
Kim
and
A. H.
Muliana
, “
A time-integration method for the viscoelastic-viscoplastic analyses of polymers and finite element implementation
,”
Int. J. Numer. Methods Eng.
, Vol.
79
, no.
5
, pp.
550
575
, Jul.
2009
.
12.
S.
Kweon
and
A. A.
Benzerga
, “
Finite element implementation of a macromolecular viscoplastic polymer model
,”
Int. J. Numer. Methods Eng.
, Vol.
94
, no.
10
, pp.
895
919
, Jun.
2013
.
13.
B. P.
Patel
and
A. K.
Gupta
, “
An investigation on nonlocal continuum damage models for composite laminated panels
,”
Compos. Part B Eng.
, Vol.
60
, pp.
485
494
, Apr.
2014
.
14.
P.
Bere
,
P.
Berce
, and
O.
Nemes
, “
Phenomenological fracture model for biaxial fibre reinforced composites
,”
Compos. Part B Eng.
, Vol.
43
, no.
5
, pp.
2237
2243
, Jul.
2012
.
15.
K.
Tanaka
and
T.
Mori
, “
The hardening of crystals by non-deforming particles and fibres
,”
Acta Metall.
, Vol.
18
, no.
8
, pp.
931
941
,
1970
.
16.
A.
Gerard
and
S.
Baste
, “Evaluation of anisotropic damage in composite materials,”
in 3th Int. Cong. On Air and Structure-borne sound and vibration
, vol.
3
pp.
2025
2032
,
1994
.
17.
Z.
Jendli
,
F.
Meraghni
,
J.
Fitoussi
, and
D.
Baptiste
, “
Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites
,”
in Composites Part A: Applied Science and Manufacturing
, Vol.
35
, pp.
779
78
,
2004
.
18.
M. F.
Arif
,
N.
Saintier
,
F.
Meraghni
,
J.
Fitoussi
,
Y.
Chemisky
, and
G.
Robert
, “
Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66
,”
Compos. Part B Eng.
, Vol.
61
, pp.
55
65
, May
2014
.
19.
A.
Bussiba
,
M.
Kupiec
,
S.
Ifergane
,
R.
Piat
, and
T.
Böhlke
, “
Damage evolution and fracture events sequence in various composites by acoustic emission technique
,”
Compos. Sci. Technol.
, Vol.
68
, no.
5
, pp.
1144
1155
, Apr.
2008
.
20.
M. A.
Dupertuis
,
B.
Acklin
, and
M.
Proctor
, “
Generalization of complex Snell–Descartes and Fresnel laws
,”
J. Opt. Soc. Am. A
, Vol.
11
, pp.
1159
1166
,
1994
.
21.
C.
Daoût
,
O.
Rozenbaum
,
D. De Sousa
Meneses
,
D.
Rochais
. “
Identification of the spectral complex refractive index of pure silica micrometric fibers versus temperature
Int. J. of Heat and Mass Trans.
vol.
204
,
123869
,
2023
.
22.
D. A.
Hun
,
M.
Haddad
and
I.
Doghri
. “
Modeling and simulation of viscoelastic solids under large numbers of loading cycles
Mechanics of Adv. Mater. and Struct.
vol.
30
,
1542
1558
,
2022
.
23.
J.
Fitoussi
,
M. H.
Nikooharf
,
A.
Kallel
,
M.
Shirinbayan
. “
Mechanical Properties and Damage Behavior of Polypropylene Composite (GF50-PP) Plate Fabricated by Thermocompression Process Under High Strain Rate Loading at Room and Cryogenic Temperatures
Appl. Compos. Mater.
vol.
29
,
1959-1979
,
2022
.
24.
M.
Shirinbayan
,
J.
Fitoussi
,
M.
Bocquet
,
F.
Meraghni
,
B.
Surowiec
,
A.
Tcharkhtchi
. “
Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates
”.
Compos. Part B: Eng.
vol.
115
,
3
13
,
2017
.
This content is only available via PDF.