This paper is intended to present a comprehensive approach including the design of a cyber-physical system (CPS) for structural health monitoring (SHM) of composite aircraft structures. The paper summarises the developments of a miniaturised data acquisition (DAQ) unit. Afterwards, the existing Wireless Sensor Networks (WSNs) based SHM technologies are presented and compared to develop a new approach. This new approach is the CPS for SHM consisting of a miniaturised on-board DAQ, WSN and a user-friendly graphical user interface (GUI). The cyber and physical parts of the CPS are separately covered in detail. To manage the entire system, a concept is addressed to define all the stages and components of how to work together during the monitoring of structural integrity. This concept involves data acquisition, the transmission of sensing results wirelessly, data visualisation and processing using a developed software with GUI. The proposed CPS for SHM shows that it is a promising and time-efficient system for multi-stage and multi-disciplinary SHM applications. This approach does not require other software tools such as LabView and Matlab to visualise and process sensor data. All systems are integrated into one platform with this concept. Another advantage is that the proposed system is flexible to be improved by adding new features to the software developed in the cyber part of the CPS. Additionally, the CPS is convenient for on-board aircraft SHM applications with a wireless miniaturised DAQ unit powered by the software with GUI.

1.
B.
Aygün
and
V. C.
Gungor
,
Sensor Review
31
,
261
76
(
2011
).
2.
J.
Lin
,
F.
Gao
,
Z.
Luo
and
L.
Zeng
,
IEEE Transactions on Industrial Electronics
63
,
6989
98
(
2016
).
3.
L.
Capineri
and
A.
Bulletti
,
Sensors
21
, (
2021
).
4.
A.
Sofi
,
J. Jane
Regita
,
B.
Rane
and
H. H.
Lau
,
Mechanical Systems and Signal Processing
163
,
108113
-(
2022
).
5.
A. H.
Seno
and
M. H. F.
Aliabadi
,
Smart Materials and Structures
29
,
115029
(
2020
).
6.
A. H.
Seno
,
Z. Sharif
Khodaei
and
M. H. F.
Aliabadi
,
Mechanical Systems and Signal Processing
129
,
20
36
(
2019
).
7.
J.
Yoon
,
D.
He
and
B.
Van Hecke
,
IEEE Transactions on Industrial Electronics
62
,
6585
93
(
2015
).
8.
9.
D. G.
Bekas
,
Z.
Sharif-Khodaei
and
M. H. Ferri
Aliabadi
,
Sensors
18
, (
2018
).
10.
H.
Mei
,
M. F.
Haider
,
R.
Joseph
,
A.
Migot
and
V.
Giurgiutiu
,
Sensors
(
Switzerland
)
19
, (
2019
).
11.
J. B.
Ihn
and
F. K.
Chang
,
Structural Health Monitoring
7
,
5
19
(
2008
).
12.
G.
Song
,
H.
Gu
,
Y. L.
Mo
,
T. T. C.
Hsu
and
H.
Dhonde
,
Smart Materials and Structures
16
,
959
68
(
2007
).
13.
M.
Choi
and
B.
Sweetman
,
Structural Health Monitoring
9
,
13
24
(
2010
).
14.
J.
Gubbi
,
R.
Buyya
,
S.
Marusic
and
M.
Palaniswami
,
Future Generation Computer Systems
29
,
1645
60
(
2013
).
15.
M.
Moness
and
A. M.
Moustafa
,
IEEE Internet of Things Journal
3
,
134
45
(
2016
).
16.
R.
Belkeziz
and
Z.
Jarir
,
IEEE Internet of Things Journal
4
,
619
35
(
2017
).
17.
P. C.
Chang
,
A.
Flatau
and
S. C.
Liu
,
Structural Health Monitoring
2
,
257
67
(
2003
).
18.
J. P.
Lynch
,
Royal Society of London Transactions Series A
365
,
345
72
(
2006
).
19.
H.
Fu
,
Z.
Sharif-Khodaei
and
M. H. F.
Aliabadi
,
Mechanical Systems and Signal Processing
128
,
352
68
(
2019
).
20.
H.
Fu
,
Z. Sharif
Khodaei
and
M. H. F.
Aliabadi
,
IEEE Internet of Things Journal
, (
2019
).
21.
J. P.
Lynch
,
“Decentralization of wireless monitoring and control technologies for smart civil structures,”
Ph.D. thesis,
Stanford University
,
2002
.
22.
Y. J.
Kim
and
L.
Jofre
,
IEEE Transactions on Antennas and Propagation
51
,
3022
32
(
2003
).
23.
M.
Abdulkarem
,
K.
Samsudin
,
F. Z.
Rokhani
and
M. F. A
Rasid
,
Structural Health Monitoring
19
,
693
735
(
2020
).
24.
R. A.
Swartz
,
D.
Jung
,
J. P.
Lynch
,
Y.
Wang
and
D.
Shi
,
M. P.
Flynn
, “
Design of a wireless sensor for scalable distributed in-network computation in a structural health monitoring system
,”
Proceedings of the 5th International Workshop on Structural Health Monitoring
(
Stanford
,
USA
,
2005
)
25.
Y.
Wang
,
J. P.
Lynch
and
K. H.
Law
,
Structure and Infrastructure Engineering
3
,
103
20
(
2007
).
26.
D. D. L.
Mascarenas
,
E. B.
Flynn
,
M. D.
Todd
,
T. G.
Overly
,
K. M.
Farinholt
,
G.
Park
and
C. R.
Farrar
,
Journal of Sound and Vibration
329
,
2410
20
(
2010
).
27.
T.
Harms
,
B.
Banks
,
S. Sedigh
Sarvestani
and
F.
Bastianini
, “
Design and testing of a low-power wireless sensor network for structural health monitoring of bridges
,”
Proceedings of SPIE-The International Society for Optical Engineering
(
San Diego
,
California, United States
,
2009
)
28.
E.
Sazonov
,
V.
Krishnamurthy
and
R.
Schilling
,
Structural Health Monitoring
9
,
465
76
(
2010
).
29.
Q.
Huang
,
B.
Tang
and
L.
Deng
,
Measurement
66
,
35
44
(
2015
).
30.
H.
Yao
,
H.
Cao
and
J.
Li
,
Measurement and Control
49
,
23
32
(
2016
).
31.
A.
Ledeczi
,
P.
Völgyesi
,
E.
Barth
,
A.
Nadas
,
A.
Pedchenko
,
T.
Hay
and
S.
Jayaraman
, “Self-sustaining Wireless Acoustic Emission Sensor System for Bridge Monitoring,” in
New Developments in Sensing Technology for Structural Health Monitoring,
Springer
,
2011
, p.
15
39
.
32.
L.
Zhu
,
Y.
Fu
,
R.
Chow
,
B. F.
Spencer
,
J. W.
Park
and
K.
Mechitov
,
Sensors
(
Switzerland
)
18
,
1
16
(
2018
).
33.
STMicroelectronics
,
STM32L476ZE Ultra-low-power with FPU Arm Cortex-M4 MCU
,
2019
. [Available from: https://www.st.com/en/microcontrollers-microprocessors/stm32l476ze.html#overview.
34.
DIGI Company
,
Digi XBee 3 Zigbee 3 RF Module
,
2021
.
35.
V.
Giurgiutiu
and
G.
Santoni-Bottai
,
AIAA Journal
49
,
565
81
(
2011
).
36.
Z.
Su
and
L.
Ye
,
“Identification of Damage Using Lamb Waves,”
(
Springer
,
2009
).
37.
M. J.
Cunningham
and
G. L.
Bibby
,
“Electrical Measurement,”
16th
ed
2003
, p.
11
1
, -3--43.
38.
DIGI Company
,
XBee ZigBee Mesh Kit User Guide
,
2015
.
This content is only available via PDF.
Published open access through an agreement with Imperial College London