This work evaluates the impact of using supercritical carbon dioxide mixtures (s-CO2/COS, s CO2/H2S, s-CO2/NH3, and s-CO2/SO2) as a working fluid carried out Brayton s-CO2 power cycles. Some complex configurations were studied: partial cooling with recompression without reheating (PCRC), partial cooling with recompression and reheating (PCRC RH), partial cooling with recompression and two reheatings (PCRC 2RH), and partial cooling with recompression and three reheatings (PCRC 3RH). The design parameters evaluated are the solar plant performance at the design point, the pinch point in the heat recuperators, and total conductance (UAtotal) with values between 5 – 20 [MW/K]. This analysis is complemented by studying the effects of the compressor inlet temperature (CIT) variation in each configuration. Interesting results are obtained from this work; the mixtures containing COS and H2S provide better efficiency from a CIT = 55 °C compared to the pure s-CO2 fluid in PCRC configuration. While in the PCRC-RH and PCRC-2RH configurations, this occurs at a compressor inlet temperature higher than 57 °C. Finally, in the PCRC-3RH configuration, the efficiency is only slightly better when the CIT is 60 °C.

1.
Binotti
,
M.
,
Marcoberardino
,
G. D.
,
Iora
,
P.
,
Invernizzi
,
C.
, &
Manzolini
,
G.
SCARABEUS: Supercritical carbon dioxide/alternative fluid blends for efficiency upgrade of solar power plants
.
In AIP CONFERENCE PROCEEDINGS
, Vol.
2303
, No.
1
, p.
130002
,
AIP Publishing LLC
. (
2020
), .
2.
L.F.
González-Portillo
,
J.
Muñoz-Antón
,
J.M.
Martínez-Val
,
Supercritical carbon dioxide cycles with multi-heating in Concentrating Solar Power plants
,
Solar Energy.
207
(
2020
)
144
156
.
3.
L.F.
González-Portillo
,
J.
Muñoz-Antón
,
J.M.
Martínez-Val
,
Thermodynamic analysis of multi-heating cycles working around the critical point
,
Applied Thermal Engineering.
174
(
2020
)
115292
.
4.
Haroon
,
M.
,
Sheikh
,
N. A.
,
Ayub
,
A.
,
Tariq
,
R.
,
Sher
,
F.
,
Baheta
,
A. T.
, &
Imran
,
M.
Exergetic, economic and exergo-environmental analysis of bottoming power cycles operating with CO2-based binary mixture
.
Energies
,
13
(
19
),
5080
(
2020
).
5.
Valencia-Chapi
,
R.
,
Coco-Enríquez
,
L.
, &
Muñoz-Antón
,
J.
Supercritical CO2 Mixtures for Advanced Brayton Power Cycles in Line-Focusing Solar Power Plants
.
Applied Sciences
,
10
(
1
),
55
(
2020
). Available from
6.
Wang
,
K.
;
Li
,
M.J.
;
Guo
,
J.Q.
;
Li
,
P.
;
Liu
,
Z.B.
A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
.
Appl. Energy
2018
,
212
,
109
121
.
7.
Neises
,
T.
;
Turchi
,
C.
Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650° C
.
Sol. Energy
2019
,
181
,
27
36
.
8.
Linares
,
J. I.
,
Montes
,
M. J.
,
Cantizano
,
A.
, &
Sánchez
,
C.
(
2020
).
A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants
.
Applied Energy
,
263
,
114644
.
9.
Tafur-Escanta
,
P.
;
Valencia-Chapi
,
R.
;
López-Paniagua
,
I.
;
Coco-Enríquez
,
L.
;
Muñoz-Antón
,
J.
Supercritical CO2 Binary Mixtures for Recompression Brayton s-CO2 Power Cycles Coupled to Solar Thermal Energy Plants
.
Energies
2021
,
14
,
4050
. .
10.
Valencia-Chapi
R
,
Tafur-Escanta
P
,
Coco-Enriquez
L
,
Muñoz-Anton
J.
Supercritical CO2 Mixtures for Brayton Power Cycles Complex Configurations with Concentrated Solar Power
.
In AIP Conference Proceedings, Albuquerque – EE. UU
. (
2020
),
90009
, .
11.
Lemmon
,
E.W.
;
Bell
,
I.H.
;
Huber
,
M.L.
;
McLinden
,
M.O.
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0;
National Institute of Standards and Technology
:
Gaithersbg, MD, USA
,
2018
. Available online: https://www.nist.gov/sites/default/files/documents/2018/05/23/refprop10a.pdf (accessed on 20 April 2021).
12.
Rowan
TH
.
Thesis: Functional Stability Analysis of Numerical Algorithms SUBPLEX
. Unpublished Dissertation.
1990
. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5708
13.
Powell MJD. The NEWUOA Software for Unconstrained Optimization without Derivatives
.
2006
;
255
97
. Available from: http://link.springer.com/10.1007/0-387-30065-1_16
14.
Powell
M.
The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives
.
NA Rep NA2009/06.
2009
;
39
. Available from: http://www6.cityu.edu.hk/rcms/publications/preprint26.pdf
15.
Kulhánek
M
,
Dostál
V.
Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles
.
2011
;
2
8
. Available from: http://www.sco2powercyclesymposium.org/resource_center/system_concepts/thermodynamic-analysis-and-comparison-of-supercritical-carbon-dioxide-cycles
16.
Ye
,
Z.
,
Wang
,
Y.
,
Song
,
Y.
,
Yin
,
X.
, &
Cao
,
F.
(
2020
).
Optimal discharge pressure in transcritical CO2 heat pump water heater with internal heat exchanger based on pinch point analysis
.
International Journal of Refrigeration
,
118
,
12
20
. .
17.
Siddiqui
,
M.E.
;
Almitani
,
K.H.
Proposal and Thermodynamic Assessment of S-CO2 Brayton Cycle Layout for Improved Heat Recovery
.
Entropy
2020
,
22
,
305
.
18.
G.
Manzolini
,
M.
Binotti
,
D.
Bonalumi
,
C.
Invernizzi
, and
P.
Iora
, “
CO2 mixtures as innovative working fluid in power cycles applied to solar plants. Techno-economic assessment
,”
Sol. Energy
,
2019
.
This content is only available via PDF.