Each solar tower power plant is designed for a pre-calculated optimal flux density distribution on the receiver. Any deviation from it has a direct impact on the component durability, energy efficiency and all downstream processes. An accurate knowledge of the current and predicted flux density is therefore essential. However, the existing measurements to obtain the flux density are either inaccurate, complicated or expensive. Moreover, to predict upcoming flux density maps, simulations are indispensable. Also, because there is still no cost-efficient way to measure heliostat surfaces on an industrial scale, these simulations neglect the individual surface errors of each heliostat and are therefore too inaccurate for a reliable prediction. We present a novel method based on artificial intelligence (AI) to include real heliostat surface errors into the flux density simulation, only by measuring the heliostats focal spot. The method needs only data generated by the already well-established camera-target heliostat calibration. Using the AI method as a supplement to this calibration, within this measurement, it is possible to simultaneously detect both main heliostat errors, the surface deformations and the misalignment. In this work, different neural network (NN) architectures are trained with artificially generated data and studied for their applicability to the described methodology. The network types used are conditioned and unconditioned generative adversarial networks (GANs) as well as neural radiance fields (NeRFs). The latter archives at best a Peak Signal to Noise Ratio (PSNR) of up to 27.8. Afterwards the network results are compared qualitatively in terms of image quality, controllability and dataset size.

1.
Z.
Wang
Design of Solar Thermal Power Plants
(
Academic Press
,
2019
), pp
1
46
2.
P.
Doron
,
A high temperature receiver for a solarized micro-gas-turbine
(
AIP Conference Proceedings
2303
,
030012
(
2020
)),
3.
Röger
,
M.
,
Herrmann
,
P.
,
Ulmer
,
S.
,
Ebert
,
M.
,
Prahl
,
C.
,
Göhring
,
F.
,
Techniques to measure solar flux density distribution on large-scale receivers
(
Journal of Solar Energy Engineering
,
2014
, Vol.
136
, p.
031013
)
4.
Ulmer
,
S.
,
Messung der Strahlungsflussdichte-Verteilung von punktkonzentrierenden solarthermischen Kraftwerken
(PhD Thesis,
VDI Verlag, Düsseldorf
,
2004
)
5.
Göhring
,
F.
,
Bender
,
O.
,
Röger
,
M.
,
Nettlau
,
J.
,
Schwarzbözl
,
P.
,
Flux density measurement on open volumetric receivers
(
Proceedings of SolarPACES
2011
,
Granada, Spain
, Sept.
20
23
)
6.
K. W.
Stone
Automatic heliostat track alignment method
(Google Patents,
1986
)
7.
Offergeld
, Matthias und Röger, Marc und Stadler, Hannes und Gorzalka, Philip und Hoffschmidt, Bernhard (
2019
)
Flux density measurement for industrial-scale solar power towers using the reflection off the absorber.
(
AIP Conference Proceedings
,
2126
(
110002
), Seiten 1-8. Solar PACES Conference,
8
12
. Okt.
2018
,
Casablanca
,
Morocco
. doi: ).
8.
Belhomme
,
Boris und
Pitz-Paal
,
Robert und
Schwarzbözl
,
Peter und
Ulmer
,
Steffen
(
2009
)
A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields.
Journal of Solar Energy Engineering
,
131
(
3
).
American Society of Mechanical Engineers (ASME
). ISSN 0199-6231.
9.
C.
Stattler
et al.
Review of heliostat calibration and tracking control methods
(
Solar Energy
Vol.
207
), p
110
132
10.
Xiao
,
Jun
, et al.
A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications.
(
Renewable and Sustainable Energy Reviews
16
.
5
(
2012
):
2539
2544
.)
11.
M.
Pargmann
et al.
High accuracy data-driven heliostat calibration and state prediction with pretrained deep neural networks
(
Solar Energy
, Vol
218
,
2021
), p
48
.
56
12.
T.
März
et al.
Validation of Two Optical Measurement Methods for the Qualification of the Shape Accuracy of Mirror Panels for Concentrating Solar Systems
(
Journal of Solar Energy Engineering
, Vol
133
, No
3
),
2011
13.
S.
Ulmer
Automated high resolution measurement of heliostat slope errors
(
Solar Energy
, Vol
85
, No
4
) p
681
687
14.
S.
Pidhorskyi
et al.
Adversarial Latent Autoencoders
(arXiv:2004.04467v1,
2020
)
15.
D.
Bau
et al.
Seeing what a gan cannot generate
(
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
2019
) p
4502
4511
16.
A.
Radford
et al.
Unsupervised representation learning with deep convolutional generative adversarial networks
(arXiv preprent arXiv:1511.06434,
2015
)
17.
B.
Mildenhall
,
P. P.
Srinivasan
,
M.
Tancik
,
J. T.
Barron
,
R.
Ramamoorthi
, and
R.
Ng
,
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
(CoRR abs/2003.08934,
2020
).
18.
R.
Martin-Brualla
,
N.
Radwan
,
M. S. M.
Sajjadi
,
J. T.
Barron
,
A.
Dosovitskiy
, and
D.
Duckworth
,
NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections
(CoRR, vol. abs/2008.02268,
2020
)
19.
Pumarola
,
Albert
, et al.
D-nerf: Neural radiance fields for dynamic scenes.
(
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021
)
20.
A.
Jain
,
M.
Tancik
, and
P.
Abbeel
,
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis
( CoRR, vol. abs/2104.00677,
2021
), [Online]. Available: https://arxiv.org/abs/2104.00677.
21.
J. T.
Kajiya
, The rendering equation (
Proceedings of the 13th annual conference on Computer graphics and interactive techniques
,
1986
), pp.
143
150
.
22.
Garbin
,
Stephan
J.
, et al.
Fastnerf: High-fidelity neural rendering at 200fps.
(arXiv preprint arXiv:2103.10380,
2021
). [Online]. Available: https://arxiv.org/abs/2008.02268.
23.
N.
Ahlbrink
,
B.
Belhomme
,
R.
Flesch
,
D. Maldonado
Quinto
,
A.
Rong
, and
P.
Schwarzbözl
,
STRAL: Fast ray tracing software with tool coupling capabilities for high-precision simulations of solar thermal power plants
(
Proceedings of the SolarPACES 2012 conference
,
2012
).
24.
M.
Tancik
et al.,
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains (
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020
)
This content is only available via PDF.