Shingling is an alternative method to conventional wire soldering for the interconnection of solar cells in PV modules. In this article the production sequence from host cells to shingled modules is explained. The efficiency changes along the process chain are analyzed theoretically and by experiment. The I-V characterization of the host cells overesti-mates the efficiency of the later separated shingles, which are measured from front side busbar to back side busbar, because of the finger resistance effect. Additionally, edge recombination further reduces the efficiency, but half of this loss can be avoided by edge passivation (passivated edge technology, PET). The efficiency losses from shingle to module are domi-nated by geometrical factors, particularly the efficient use of space in the glass. In an experiment with small-scale modules the ECA amount was reduced to below 3 mg per shingle without affecting the initial performance and stability in thermal cycling (400 cycles). However, to hold down the shingles during ECA curing was found to be important for joint reliability. In a further experiment, 700 commercially available, monocrystalline, monofacial PERC host cells were separated into 156.75 mm×31.35 mm shingles by laser scribe and mechanical cleave and integrated in ten full-size shingled PV modules. The finger resistance effect after separation on efficiency was (−0.3±0.1) %abs and edge recombination led to an additional loss of (−0.8±0.1) %abs. The so-obtained (20.5±0.2) % efficient shingles were automatically connected to 31-shingle strings using a teamtechnik TT1600ECA stringer. The resulting modules had a full-area efficiency of (17.7±0.1) %. Ac-cording to a SmartCalc.Module simulation, the non-optimal use of glass alone results in an efficiency loss of −2.5 %abs. One module with 432 shingles reached a power of 412 Wp and 19.6 % efficiency demonstrating a greatly improved packing density. Finally, the modules were exposed to thermal cycling 200, damp heat 1000 h, mechanical load 5400 Pa, humidity freeze 10 cycles and hot spot tests, which were all passed without significant degradation.

1.
D. C.
Dickson
,
Photovoltaic semiconductor apparatus or the like
, U.S. Patent No 2,938,938 A (31 May
1960
).
2.
L.
Li
and
J. E.
Morris
,
Int. J. Microelectronic Packaging
1
,
159
175
(
1998
).
3.
T.
Geipel
,
Electrically conductive adhesives for photovoltaic modules
,
Dissertation, Gottfried Wilhelm Leibniz Universität
Hannover
,
2018
.
4.
N.
Klasen
,
A.
Mondon
,
A.
Kraft
, and
U.
Eitner
,
SSRN Journal
(
2018
).
5.
G.
Beaucarne
,
Enrgy Proced
98
,
115
124
(
2016
).
6.
A.
Mondon
,
N.
Klasen
,
E.
Fokuhl
,
M.
Mittag
,
M.
Heinrich
, and
H. Wirth
in
Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition
(
2018
), p.
1006
1010
.
7.
Maxeon Solar Technologies
,
Sunpower performance solar panels, Performance P5 - Power Plant 545W datasheet
. 536098 REV B / A4_EN (
2020
).
8.
Solaria
.
Solar Panels for Home & Business
. company homepage, <https://www.solaria.com/powerxt-over-view>.
9.
Tongwei
Solar
,
Shingled monofacial module
, TH635∼660PMB6, 68 SC datasheet (
2021
).
10.
Canadian
Solar
,
HiDM, High density MONO PERC module datasheet.
V5.59_EN (
2020
).
11.
N.
Wöhrle
,
E.
Lohmüller
,
M.
Mittag
,
A.
Moldovan
,
P.
Baliozan
,
T.
Fellmeth
,
K.
Krauss
,
A.
Kraft
, and
R.
Preu
,
Photovoltaics International
36
,
46
58
(
2017
).
12.
P.
Baliozian
,
N.
Klasen
,
N.
Wöhrle
,
C.
Kutter
,
H.
Stolzenburg
,
A.
Münzer
,
P.
Saint-Cast
,
M.
Mittag
,
E.
Lohmüller
,
T.
Fellmeth
,
M.
Al-Akash
,
A.
Kraft
,
M.
Heinrich
,
A.
Richter
,
A.
Fell
,
A.
Spribille
,
D.
Neuhaus
, and
R.
Preu
,
Photovoltaics International
43
,
129
145
(
2019
).
13.
A.
Münzer
,
P.
Baliozan
,
K.
Ahmed
,
A.
Nair
,
E.
Lohmüller
,
T.
Fellmeth
,
A.
Spribille
, and
R.
Preu
, “
Laser As-sisted Separation Processes for Bifacial pSPEER Shingle Solar Cells
,” in
Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition
(
2020
).
14.
teamtechnik GmbH
,
Stringer TT1600 ECA
. company website, <https://www.teamtechnik.com/en/new-en-ergy/stringer-systems/solar-stringer-tt1600eca>.
15.
M10 Industries AG
,
Shingle Matrix Technology
. company website, <https://www.m10-ag.com/en/matrix>.
16.
R.
Morad
,
G.
Almogy
,
I.
Suez
,
J.
Hummel
,
N.
Beckett
,
Y.
Lin
,
J.
Gannon
,
M. J.
Starkey
,
R.
Stuart
,
T.
Lance
, and
D.
Maydan
,
Method for manufacturing solar cell modules, EU Patent
No. 3,489,848 B1 (26 May
2015
).
17.
D.
Tonini
,
G.
Cellere
,
M.
Bertazzo
,
A.
Fecchio
,
L.
Cerasti
, and
M.
Galiazzo
,
Enrgy Proced
150
,
36
43
(
2018
).
18.
IEC 61730-1 module safety qualification – Part 1: Requirements for construction
(
2016
).
19.
S.
Wendlandt
,
M.
Gebrelul
,
S.
Heller
,
P.
Dörder
, and
L.
Podlowski
, “
Characterization and Long Term Stabil-ity Analysis at Photovoltaic Modules with Shingled Cell Strings
,” in
Proceedings of the 37th European Pho-tovoltaic Solar Energy Conference and Exhibition
(
2020
), p.
1027
1032
.
20.
C. E.
Clement
,
J. P.
Singh
,
E.
Birgersson
,
Y.
Wang
, and
Y. S.
Khoo
,
Progress in Solar Energy 1
207
,
729
735
(
2020
).
21.
IEC 61215-2 Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 2: Test procedures
(
2016
).
22.
R.
Morad
,
G.
Almogy
,
I.
Suez
,
J.
Hummel
,
N.
Beckett
,
Y.
Lin
,
J.
Gannon
,
M. J.
Starkey
,
R.
Stuart
,
T.
Lance
, and
D.
Maydan
,
Shingled solar cell module
, EU Patent No. 3,522,045 A1 (26 May
2015
).
23.
R.
Morad
,
G.
Almogy
,
I.
Suez
,
J.
Hummel
,
N.
Beckett
,
Y.
Lin
,
J.
Gannon
,
M. J.
Starkey
,
R.
Stuart
,
T.
Lance
, and
D.
Maydan
,
Shingled solar cell module
, EU Patent No. 3,518,126 A1 (26 May
2015
).
24.
D.
Rudolph
,
J.
Rabanal-Arabach
,
I.
Ullmann
,
A.
Halm
,
A.
Schneider
, and
T.
Fischer
, “
Cell design optimization for shingled modules
,” in
Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition
(
2017
), p.
880
883
.
25.
N.
Wöhrle
,
T.
Fellmeth
,
E.
Lohmüller
,
P.
Baliozian
,
A.
Fell
, and
R.
Preu
, “
The SPEER solar cell. Simulation study of shingled bifacial PERC-technology-based stripe cells
,” in
Proceedings of the 33rd European Photo-voltaic Solar Energy Conference and Exhibition
(
2017
), p.
844
848
.
26.
P.
Baliozian
,
M.
Al-Akash
,
E.
Lohmuller
,
A.
Richter
,
T.
Fellmeth
,
A.
Munzer
,
N.
Wohrle
,
P.
Saint-Cast
,
H.
Stolzenburg
,
A.
Spribille
, and
R.
Preu
,
IEEE J. Photovoltaics
10
,
390
397
(
2020
).
27.
M.
Mittag
,
T.
Zech
,
M.
Wiese
,
D.
Blaesi
,
M.
Ebert
, and
H. Wirth
in
Proceedings of the 44th IEEE PV Specialist Conference
(
2017
), p.
1531
1536
.
28.
A.
Mette
,
New Concepts for Front Side Metallization of Industrial Silicon Solar Cells
, Dissertation, Albert-Ludwigs-Universität Freiburg, Fraunhofer Institut für Solare Energiesysteme (ISE)
Freiburg
,
2007
.
29.
A.
Lorenz
,
M.
Linse
,
H.
Frintrup
,
M.
Jeitler
,
A.
Mette
,
M.
Lehner
,
R.
Greutmann
,
Brocker
,
H.
König
,
M.
,
D.
Erath
, and
F.
Clement
in
Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition
(
2018
), p.
819
824
.
30.
I.
Hädrich
,
U.
Eitner
,
M.
Wiese
, and
H.
Wirth
,
Sol Energ Mat Sol C
131
,
14
23
(
2014
).
31.
M.
Mittag
and
M.
Ebert
,
Photovoltaics International
36
,
97
104
(
2017
).
32.
D. D.
Lu
,
Q. K.
Tong
, and
C. P.
Wong
,
IEEE Transactions on Components and Packaging Technologies
22
,
365
371
(
1999
).
33.
D. D.
Lu
and
C. P.
Wong
,
International Journal of Adhesion and Adhesives
20
,
189
193
(
2000
).
34.
M.
Mittag
,
A.
Pfreundt
,
J.
Shahid
,
N.
Wöhrle
, and
D.
Neuhaus
, “
Techno-Economic Analysis of Half Cell Modules - The Impact of Half Cells on Module Power and Costs
,” in
Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition
(
2019
), p.
1032
1039
.
This content is only available via PDF.