Concerns about the rapid depletion of fossil fuels, energy security, climate change due to global warming, environmental pollution, and faster increase of fossil fuel prices have drawn attention to researchers, the scientific community, and government policymakers to develop alternative energy sources for reducing dependence on fossil fuel. In recent years, microalgae culture has received significant attention due to its potential application for bioenergy production, wastewater treatment, industrial CO2 removal, and production of biochemical compounds that can be used for human and animal health and other benefits. However, large-scale microalgae production and their processing for producing various products and by-products could have environmental impacts beyond energy consumption in the microalgal production process. This article has reviewed the environmental effects of microalgae-based biofuel production on water resources and quality, eutrophication, biodiversity, waterborne toxicant, algal toxicity, wastewater remediation or treatment, waste generation, and greenhouse gas land-use changes, and genetically engineered microalgae.

1.
Statistical Review of World Energy
2021
, 70th edition.
2.
V. K.
Gupta
and
M. G.
Tuohy
.
Biofuel technologies: recent developments
(
Springer
,
Berlin Heidelberg
2013
).
3.
S. E.
Hosseini
,
M. A.
Wahid
, and
N.
Aghili
,
The scenario of greenhouse gases reduction in Malaysia
.
Renew Sustain Energy Rev
28
,
400
9
(
2013
).
4.
M. K.
Lam
,
K. T.
Lee
, and A
R.
Mohamed
,
Current status and challenges on microalgae-based carbon capture
,
Int. J. Green. Gas Control.
10
,
456
469
(
2012
).
5.
A. R.
Kovscek
,
M. D.
Cakici
,
Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery
.
Energ. Convers Manage
46
,
1941
1956
[
2005
].
6.
M. R.
Tredici
2010.
Photobiology of microalgae mass cultures: understanding the tools for the next green revolution
,
Biofuels
1
,
143
162
(
2010
).
7.
S. A.
Khan
,
R. M. Z.
Hussain
,
S.
Prasad
, and
U. C.
Banerjee
,
Prospects of biodiesel production from microalgae in India
.
Renew. Sust. Energ. Rev.
13
,
2361
2372
(
2009
).
8.
C.
Yusuf
,
Biodiesel from microalgae. Biotechnol.
25
,
294
306
(
2007
).
9.
S.
Mobin
and
F.
Alam
,
Some promising microalgal species for commercial applications: A review
,
Energy Procedia
110
,
510
517
(
2017
).
10.
S. M. A.
Mobin
and
F.
Alam
, “A review of microalgal biofuels, challenges and future directions”, in
Application of thermo-fluid processes in energy systems: key issues and recent developments for a sustainable future
, edited by
M. M. K.
Khan
,
A. A.
Chowdhury
,
N. M. S.
Hassan
(
Springer Nature Singapore Pte Ltd
.,
Singapore
,
2018
), pp.
83
108
.
11.
S.
Mobin
and
F.
Alam
, “
Biofuel production from algae utilizing wastewater
”,
Proceedings of 19th Australasian Fluid Mechanics Conference Melbourne
, Australia 8-11 December 2014, Article No. 27 (
Curran Associates Inc., Red Hook, NY
,
2014
), pp
82
88
.
12.
G. G.
Zaimes
and
V.
Khanna
,
Microalgal biomass production pathways: Evaluation of life cycle environmental impacts
.
Biotechnol Biofuels
6
:
88
,
1
11
(
2013
).
13.
R.
Slade
and
A.
Bauen
,
Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects
,
Biomass Bioenergy
54
,
29
38
(
2013
).
14.
M-OP Fortier
and
B. S.
Sturm
,
Geographic analysis of the Feasibility of collocating algal biomass production with wastewater treatment plants
,
Environ. Sci. Technol.
46
,
11426
11434
(
2012
).
15.
National Research
Council
, “5 Environmental effects” in Sustainable Development of Algal Biofuels in the United States, (
The National Academies Press
,
Washington, DC
,
2012
), pp.
139
190
. .
16.
F.
Alam
,
S.
Mobin
, and
H.
Chowdhury
,
Third generation biofuel from algae
.
Procedia Engineering
105
,
763
768
(
2015
).
17.
Y.
Chisti
,
Biodiesel from microalgae
.
Biotechnol. Adv.
25
,
294
306
(
2007
).
18.
R.
Davis
,
A.
Aden
, and
P.T.
Pienkos
,
Techno-economic analysis of autotrophic microalgae for fuel production
,
Appl. Energy
88
,
3524
3531
(
2011
).
19.
M. F.
Chislock
,
E.
Doster
,
R. A.
Zitomer
, and
A. E.
Wilson
,
Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems
,
Nature Education Knowledge
4
,
10
(
2013
).
20.
P. K.
Usher
,
A. B.
Ross
,
M. A.
Camargo-Valero
,
A. S.
Tomlin
, and
W. F.
Gale
,
An overview of the potential environmental impacts of large-scale microalgae cultivation
,
Biofuels
5
,
331
349
(
2014
).
21.
V. H.
Smith
,
Eutrophication of freshwater and coastal marine ecosystems—A global problem
.
Environ. Sci. Pollut Res.
10
,
126
139
(
2003
).
22.
S. R.
Carpenter
,
N.E.
Caraco
,
D. L.
Correll
,
R. W.
Howarth
,
A. N.
Sharpley
, and
V. H.
Smith
,
Nonpoint pollution of surface waters with phosphorus and nitrogen
.
Ecol. Appl.
8
,
559
568
(
1998
).
23.
M.
Lehtiniemi
,
J.
Engström-Öst
, and
M.
Viitasalo
,
Turbidity decreases anti-predator behaviour in pike larvae, Esox Lucius
.
Environ. Biol. Fishes
73
,
1
8
(
2005
).
24.
A. M.
Turner
and
M. F.
Chislock
,
Blinded by the stink: nutrient enrichment impairs the perception of predation risk by freshwater snails
.
Ecol. Appl.
20
,
2089
2095
(
2010
).
25.
M.
Scheffer
,
S.
Rinaldi
,
A.
Gragnani
,
L. R.
Mur
, and
E. H.
vanNes
,
On the dominance of filamentous cyanobacteria in shallow, turbid lakes
.
Ecology
78
,
272
282
(
1997
).
26.
C. S.
Reynolds
,
V.
Huszar
,
C.
Kruk
,
L.
Naselli-Flores
, and
S.
Melo
,
Towards a functional classification of the freshwater phytoplankton
.
J. Plankton. Res.
24
,
417
428
(
2002
).
27.
T. J.
Smayda
and
C. S.
Reynolds
, 2003.
Strategies of marine dinoflagellate survival and some rules of assembly
.
J. Sea Res.
49
,
95
106
(
2003
).
28.
R. A.
Efroymson
,
D. S.
Jones
, and
A. J.
Gold
,
An ecological risk assessment framework for effects of onsite wastewater treatment systems and other localized sources of nutrients on aquatic ecosystems
.
HERA
13
,
574
614
(
2007
).
29.
R. W.
Bachmann
,
B. L.
Jones
,
D. D.
Fox
,
M.
Hoyer
,
L. A.
Bull
, and
D. E.
Canfield
,
Relations between trophic state indicators and fish in Florida (USA) lakes
.
Can. J. Fish. Aquat Sci.
53
,
842
855
(
1996
).
30.
L. L.
Smith
, Jr.,
D. M.
Oseid
,
I. R.
Adelman
, and
S. J.
Broderis
, Effect of Hydrogen Sulfide on Fish and Invertebrates: Part-I Acute and Chronic Toxicity Studies (
U.S Environmental Protection Agency
,
Duluth, Minnesota
55804
,
1976
).
31.
T.
Mathews
and
N. S.
Fisher
,
Trophic transfer of seven trace metals in a four-step marine food chain
.
Mar Ecol Prog Ser
367
,
23
33
[
2008
].
32.
A. da. S.
Ferrão-Filho
and
B.
Kozlowsky-Suzuki
,
Cyanotoxins: bioaccumulation and effects on aquatic Animals
,
Mar. Drugs
9
,
2729
2772
(
2011
)
33.
H. W.
Paerl
and
V. J.
Paul
,
Climate change: links to global expansion of harmful cyanobacteria
.
Water Research
46
,
1349
1363
(
2012
).
34.
J.
Milano
,
H. C.
Ong
,
H. H.
Masjuki
,
W. T.
Chong
, and
M. K.
Lam
,
Microalgae biofuels as an alternative to fossil fuel for power generation
,
Renew. Sust. Energ. Rev.
58
,
180
197
(
2016
).
35.
D. L.
Correll
,
Role of phosphorus in the eutrophication of receiving waters: a review
,
J. Environ. Qual.
27
,
261
6
[
1998
].
36.
G.
Tchobanoglous
,
F. L.
Burton
, and
H. D.
Stensel
.
Wastewater engineering: treatment and reuse
(4th Edition). (TMH,
2011
).
37.
J. P.
Maity
,
J.
Bundschuh
,
C.
Chen
, and
P.
Bhattacharya
,
Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives e A mini review
,
Energy
78
,
104
113
(
2014
).
38.
Y.
Wang
,
S.
Ho
,
C.
Cheng
,
W.
Guo
,
D.
Nagarajan
,
N.
Ren
,
D.
Lee
, and
J.
Chang
,
Perspectives on the feasibility of using microalgae for industrial wastewater treatment
,
Bioresour. Technol.
222
,
485
497
(
2016
).
39.
T.
Robinson
, G
McMullan
,
R Marchant
, P Nigam,
Bioresource technology, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative
,
Bioresour. Technol.
77
,
247
255
(
2001
).
40.
L.
Jinqi
and
L.
Houtian
,
Degradation of azo dyes by algae, Environ
.
Pollut.
75
,
273
278
(
1992
).
41.
S.
Loutseti
,
D. B.
Danielidis
,
A.
Economou-Amilli
,
Ch.
Katsaros
,
R.
Santas
, and
Ph.
Santas
,
The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes
,
Bioresour. Technol.
100
,
2099
2105
(
2009
).
42.
F.
Hussain
,
S. Z.
Shah
,
H.
Ahmad
,
S. A.
Abubshait
,
H. A.
Abubshait
,
A.
Laref
,
A.
Manikandan
,
H. S.
Kusuma
, and
M.
Iqbal
,
Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production
.
A review, Renew. Sust. Energ. Rev.
137
,
110603
(
2021
).
43.
W.
Zhou
,
Y.
Li
,
M.
Min
,
B.
Hu
,
H.
Zhang
,
X.
Ma
,
L.
Li
,
Y.
Cheng
,
P.
Chen
, and
R.
Ruan
,
Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production
,
Applied Energy
98
,
433
440
(
2012
).
44.
S. M. A.
Mobin
,
H.
Chowdhury
, and
F.
Alam
,
Commerically important bioproducts from microalgae and their current applications – a review
.
Energy Procedia
160
,
752
760
(
2019
).
45.
S. S.
Baral
,
K.
Singh
, and
P.
Sharma
,
The potential of sustainable algal biofuel production using CO2 from thermal power plant in India
.
Renew. Sust. Energ. Rev.
49
,
1061
1074
(
2015
).
46.
A.
Kumar
,
S.
Ergas
,
X.
Yuan
,
A.
Sahu
,
Q.
Zhang
,
J.
Dewulf
,
F. X.
Malcata
,
H.
van Langenhove
,
Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions
.
Trends. Biotechnol.
28
,
371
80
(
2010
).
47.
F.
Alam
,
A.
Date
,
R.
Rasjidin
,
S.
Mobin
,
H.
Moria
, and
A.
Baqui
, “Biofuel from algae-is it a viable alternative?”, in
Advances in biofuel production: algae and aquatic plants
, edited by
B.
Gikonyo
(
Apple Academic Press Inc
.,
Toronto and New Jersey
,
2014
), pp.
107
120
.
48.
M. R.
Tredici
,
Photobiology of microalgae mass cultures: understanding the tools for the next green revolution
.
Biofuels
1
,
143
162
(
2010
).
49.
É. C.
Francisco
,
D. B.
Neves
,
E.
Jacob-Lopes
,
T. T.
Franco
,
Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality
.
J. Chem. Technol. Biotechnol.
85
,
395
403
(
2010
).
50.
S.
Ferrón
,
D. T.
Ho
,
Z. I.
Johnson
,
M. E.
Huntley
,
Air-water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond
.
Environ. Sci. Technol.
46
,
10842
10848
(
2012
).
51.
IPCC
.
Working group I contribution to the IPCC fifth assessment report
,
Climate change
2013
: the physical science basis.
52.
M.
Poth
,
D. D.
Focht
,
N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an examination of nitrifier denitrification
.
Appl. Environ. Microbiol.
49
,
1134
41
(
1985
).
53.
K. D.
Fagerstone
,
J. C.
Quinn
,
T. H.
Bradley
,
S. K.
De Long
, and
A. J.
Marchese
,
Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation
.
Environ. Sci. Technol.
45
,
9449
9456
(
2011
).
54.
B.
Guieysse
,
M.
Plouviez
,
M.
Coilhac
,
L.
Cazali
,
Nitrous oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts
.
Biogeosciences
10
,
6737
6746
(
2013
).
55.
M.
Plouviez
,
A.
Shilton
,
M. A.
Packer
, and
B.
Guieysse
,
N2O emissions during microalgae outdoor cultivation in 50 L column photobioreactors
,
Algal Research
26
,
348
353
(
2017
).
56.
K. H.
Bowmer
and
W.A.
Muirhead
,
Inhibition of algal photosynthesis to control pH and reduce ammonia volatilization from rice floodwater
.
Fertil. Res.
13
,
13
29
(
1987
).
57.
T. M.
Mata
,
A. A.
Martins
,
N. S.
Caetano
,
Microalgae for biodiesel production and other applications: A review
,
Renew. Sust. Energ. Rev.
14
,
217
232
(
2010
).
58.
S.
Brusca
,
F.
Famoso
,
R.
Lanzafame
and
M.
Messina
,
A Site Selection Model to Identify Optimal Locations for Microalgae Biofuel Production Facilities in Sicily (Italy
),
Int. J. Appl. Eng. Res.
12
,
16058
16067
(
2017
).
59.
B.
Abdullah
,
S. A. F. S.
Muhammad
,
Z.
Shokravi
,
S.
Ismail
,
K. A.
Kassim
,
A. N.
Mahmood
,
M. M. A.
Aziz
,
Fourth generation biofuel: a review on risks and mitigation strategies
,
Renew. Sust. Energ. Rev.
107
,
37
50
(
2019
).
60.
Y. S.
Chung
,
J. W.
Lee
, and
C. H.
Chung
,
Molecular challenges in microalgae towards cost-effective production of quality biodiesel
.
Renew. Sustain. Energy Rev.
74
,
139
144
(
2017
). doi:
61.
P.
Tandon
and
Q.
Jin
,
Microalgae culture enhancement through key microbial approaches
,
Renew. Sust. Energ. Rev.
80
,
1089
99
(
2017
).
62.
J. P.
Hewett
,
A. K.
Wolfe
,
R. A.
Bergmann
,
S. C.
Stelling
,
K. I.
Davis
,
Human health and environmental risks posed by synthetic biology R&D for energy applications: a literature analysis
,
Appl Biosaf
21
,
177
184
(
2016
)
63.
S. J.
Szyjka
,
S.
Mandal
,
N. G.
Schoepp
,
B. M.
Tyler
, C
B.
Yohn
,
Y. S.
Poon
 et al,
Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production
,
Algal Res.
24
,
378
386
(
2017
).
64.
J. M.
Tiedje
,
R. K.
Colwell
,
Y. L.
Grossman
,
R. E.
Hodson
,
R. E.
Lenski
,
R. N.
Mack
, and
P. J.
Regal
,
The planned introduction of genetically engineered organisms—Ecological considerations and recommendations
.
Ecology
70
,
298
315
(
1989
).
65.
J. V.
Villarreal
,
C.
Burgués
, and
C.
Rösch
,
Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders
.
Biotechnol. Biofuels
13
,
92
(
2020
).
This content is only available via PDF.