Photovoltaic (PV) systems generate electricity from sunlight using the photovoltaic effect. The electrical efficiency of a PV system in standard test conditions (STC) ranges between 18-24%. This efficiency falls further by 0.4-0.5 %/0C with every degree rise in PV cell temperature above STC. Research shows that containing this cell temperature rise will enhance the electrical efficiency of the system. The photovoltaic thermal (PVT) systems are designed with an active heat dissipation mechanism to curb the cell temperature rise. However, the heat dissipation mechanism does not restrict the cell temperature at a required level, therefore, further advancement is needed in the system to achieve the set temperature levels. The nanofluids and Phase Change Material (PCM) application shows a considerable improvement in the PVT performance. A systematic review of the current state of the art of nanofluids and PCM application in PVT systems is needed to identify the key parameters influencing PVT performance enhancement through this application. Identifying these influential parameters will help studies in the future to optimize these applications. It is identified that nanofluid type, volume concentration and flow rate are the imperative parameters of nanofluids application. The magnitude of effect these parameters hold is delineated in this paper. It was noticed that optimum conditions for nanoparticle volume concentration and fluid flow rate are necessary as insufficient or excessive increments in these parameters may restrict the PVT performance. The scope for future studies pertaining to the furtherance of the PVT system is also described in this study.

1.
IEA
.
Share of renewables in power generation in the Sustainable Development Scenario, 2000-2030.
2020
[cited 2021 16 June]; Available from: https://www.iea.org/data-and-statistics/charts/share-of-renewables-in-power-generation-in-the-sustainable-development-scenario-2000-2030.
2.
Keleher
,
M.
and
R.
Narayanan
,
Performance analysis of alternative HVAC systems incorporating renewable energies in sub-tropical climates.
Energy Procedia
,
2019
.
160
: p.
147
154
.
3.
Xu
,
Z.
,
Optical Properties of Metal Clusters
.
1996
:
ACS Publications
.
4.
Jordaan
,
M.
and
R.
Narayanan
,
A numerical study on various heating options applied to swimming pool for energy saving.
Energy Procedia
,
2019
.
160
: p.
131
138
.
5.
Rahmanian
,
S.
and
A.
Hamzavi
,
Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid.
Solar Energy
,
2020
.
201
: p.
787
797
.
6.
Al-Waeli
,
A.H.A.
, et al,
Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors.
Energy Conversion and Management
,
2017
.
148
: p.
963
973
.
7.
Nižetić
,
S.
, et al,
Nano-enhanced phase change materials and fluids in energy applications: A review.
Renewable and Sustainable Energy Reviews
,
2020
.
129
.
8.
Ma
,
Z.
,
W.
Lin
, and
M.I.
Sohel
,
Nano-enhanced phase change materials for improved building performance.
Renewable and Sustainable Energy Reviews
,
2016
.
58
: p.
1256
1268
.
9.
Dwivedi
,
P.
, et al,
Advanced cooling techniques of P.V. modules: A state of art.
Case Studies in Thermal Engineering
,
2020
.
21
.
10.
Alous
,
S.
,
M.
Kayfeci
, and
A.
Uysal
,
Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems.
Applied Thermal Engineering
,
2019
.
162
.
11.
Sangeetha
,
M.
, et al,
Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production.
Fuel
,
2021
.
286
.
12.
Siecker
,
J.
,
K.
Kusakana
, and
B.P.
Numbi
,
A review of solar photovoltaic systems cooling technologies.
Renewable and Sustainable Energy Reviews
,
2017
.
79
: p.
192
203
.
13.
Salem
Ahmed
, M.,
A.S.A.
Mohamed
, and
H.M.
Maghrabie
,
Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions.
Journal of Solar Energy Engineering
,
2019
.
141
(
4
).
14.
Abadeh
,
A.
, et al,
Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs).
Energy
,
2018
.
159
: p.
1234
1243
.
15.
Chandel
,
S.S.
and
T.
Agarwal
,
Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems.
Renewable and Sustainable Energy Reviews
,
2017
.
73
: p.
1342
1351
.
16.
Ali
,
H.M.
,
Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review.
Solar Energy
,
2020
.
197
: p.
163
198
.
17.
Hossain
,
M.S.
, et al,
Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT- PCM) system: Energy, exergy and economic analysis.
Renewable Energy
,
2019
.
136
: p.
1320
1336
.
18.
Leong
,
K.Y.
,
M.R. Abdul
Rahman
, and
B.A.
Gurunathan
,
Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges.
Journal of Energy Storage
,
2019
.
21
: p.
18
31
.
19.
Maatallah
,
T.
,
R.
Zachariah
, and
F.
Al-Amri
,
Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water).
Solar Energy
,
2019
.
193
: p.
195
204
.
20.
Fu
,
Z.
, et al,
Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs.
Renewable Energy
,
2021
.
169
: p.
308
317
.
21.
Al-Waeli
,
A.H.A.
, et al,
Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study.
Energy Conversion and Management
,
2017
.
151
: p.
693
708
.
22.
Wen
,
D.
, et al,
Review of nanofluids for heat transfer applications.
Particuology
,
2009
.
7
(
2
): p.
141
150
.
23.
Nasiri
,
A.
, et al,
Effect of dispersion method on thermal conductivity and stability of nanofluid.
Experimental Thermal and Fluid Science
,
2011
.
35
(
4
): p.
717
723
.
24.
Ghalandari
,
M.
, et al,
Applications of nanofluids containing carbon nanotubes in solar energy systems: A review.
Journal of Molecular Liquids
,
2020
.
313
.
25.
Devendiran
,
D.K.
and
V.A.
Amirtham
,
A review on preparation, characterization, properties and applications of nanofluids.
Renewable and Sustainable Energy Reviews
,
2016
.
60
: p.
21
40
.
26.
Gupta
,
S.K.
and
S.
Pradhan
,
A review of recent advances and the role of nanofluid in solar photovoltaic thermal (PV/T) system.
Materials Today: Proceedings
,
2020
.
27.
Karami
,
N.
and
M.
Rahimi
,
Heat transfer enhancement in a PV cell using Boehmite nanofluid.
Energy Conversion and Management
,
2014
.
86
: p.
275
285
.
28.
Al-Waeli
,
A.H.A.
, et al,
An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system.
Energy Conversion and Management
,
2017
.
142
: p.
547
558
.
29.
Khanjari
,
Y.
,
F.
Pourfayaz
, and
A.B.
Kasaeian
,
Numerical investigation on using of nanofluid in a water- cooled photovoltaic thermal system.
Energy Conversion and Management
,
2016
.
122
: p.
263
278
.
30.
Hjerrild
,
N.E.
, et al,
Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids.
Solar Energy Materials and Solar Cells
,
2016
.
147
: p.
281
287
.
31.
Al-Shamani
,
A.N.
, et al,
Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions.
Energy Conversion and Management
,
2016
.
124
: p.
528
542
.
32.
Aberoumand
,
S.
,
S.
Ghamari
, and
B.
Shabani
,
Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study.
Solar Energy
,
2018
.
165
: p.
167
177
.
33.
Ahmed
,
A.
, et al,
Use of Nanofluids in Solar PV/Thermal Systems.
International Journal of Photoenergy
,
2019
.
2019
: p.
1
17
.
34.
Okonkwo
,
E.C.
, et al,
An updated review of nanofluids in various heat transfer devices.
Journal of Thermal Analysis and Calorimetry
,
2020
.
35.
Kaya
,
H.
,
K.
Arslan
, and
N.
Eltugral
,
Experimental investigation of thermal performance of an evacuated U- Tube solar collector with ZnO/Etylene glycol-pure water nanofluids.
Renewable Energy
,
2018
.
122
: p.
329
338
.
36.
Taheri
,
A.
, et al,
Improving the performance of a nanofluid-based photovoltaic thermal module utilizing dual-axis solar tracker system: Experimental examination and thermodynamic analysis.
Applied Thermal Engineering
,
2021
.
196
: p.
117178
.
37.
Hu
,
Y.
, et al,
Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications.
Applied Thermal Engineering
,
2019
.
155
: p.
650
659
.
38.
Sadeghi
,
G.
, et al,
Energy and exergy evaluation of the evacuated tube solar collector using Cu2O/water nanofluid utilizing ANN methods.
Sustainable Energy Technologies and Assessments
,
2020
.
37
: p.
100578
.
39.
Sathyamurthy
,
R.
, et al,
Experimental investigation on the effect of MgO and TiO2 nanoparticles in stepped solar still.
International Journal of Energy Research
,
2019
.
43
(
8
): p.
3295
3305
.
40.
Al-Waeli
,
A.H.A.
, et al,
Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant.
Energy
,
2018
.
151
: p.
33
44
.
41.
Cui
,
Y.
and
Q.
Zhu
.
Study of Photovoltaic/Thermal Systems with MgO-Water Nanofluids Flowing over Silicon Solar Cells
. in
2012 Asia-Pacific Power and Energy Engineering Conference
.
2012
.
42.
Sardarabadi
,
M.
,
M.
Passandideh-Fard
, and
S. Zeinali
Heris
,
Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units).
Energy
,
2014
.
66
: p.
264
272
.
43.
Jia
,
Y.
, et al,
Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant.
Solar Energy
,
2020
.
196
: p.
625
636
.
44.
Hussein
,
H.A.
,
A.H.
Numan
, and
R.A.
Abdulrahman
,
Improving the Hybrid Photovoltaic/Thermal System Performance Using Water-Cooling Technique and Zn-H2O Nanofluid.
International Journal of Photoenergy
,
2017
.
2017
: p.
1
14
.
45.
Abdallah
,
S.R.
,
H.
Saidani-Scott
, and
O.E.
Abdellatif
,
Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid.
Solar Energy
,
2019
.
181
: p.
108
115
.
46.
Moh
,
T.S.Y.
,
T.W.
Ting
, and
A.H.Y.
Lau
,
Graphene Nanoparticles (GNP) nanofluids as key cooling media on a flat solar panel through micro-sized channels.
Energy Reports
,
2020
.
6
: p.
282
286
.
47.
Hussein
,
H.
,
A.
Numan
, and
A.
Abdulmunem
,
An experimental investigation on the performance enhancement of photovoltaic/thermal panel using a tracking system and nanofluid (Al2O3).
Engineering and Technology Journal
,
2017
.
35
(5 Part A).
This content is only available via PDF.