Electric vehicle (EV) is increasingly becoming an alternative vehicle of choice to replace an internal combustion engine-powered car. EV concept is clearly linked to sustainable development. Generally, there are four types of EVs: hybrid, plug-in hybrid, battery, and fuel cell EVs. The form of energy source and storage plays a key role for all EVs. Mostly, a lithium-ion battery (high-voltage battery) is used as energy storage due to its high energy density and long-life cycle. But, high rates of charging and discharging bring about high temperatures of the lithium-ion battery, reducing its useful lifetime. A battery thermal management system (BTMS) is crucial in improving EV performance. Here, in this work, we presented an overview of BTMS employed in the EV development, as well as applications of machine learning techniques to predict and optimize BTMS performance based on fast-charging protocols. Additionally, BTMS based on tropical environmental conditions like in Thailand was also discussed.

1.
C.
Iclodean
,
B.
Varga
,
N.
Burnete
,
D.
Cimerdean
, and
B.
Jurchiş
,
Comparison of different battery types for electric vehicles
.
IOP Conference Series: Materials Science and Engineering
,
252
: p.
012058
(
2017
).
2.
Sriwilai
A.
, “
The Study on The Effect of Electric Vehicle to Energy Consumption in Thailand
,” Master’s thesis,
Thammasat University
,
2016
.
3.
Y.
Laoonual
,
T.
Maneewarn
,
S.
Saimek
 et al.,
Assessment of Electric Vehicle Technology Development and Its Implication in Thailand
(
National Science and Technology Development Agency
,
Pathum Thani
,
2015
).
4.
F.
Un-Noor
,
S.
Padmanaban
,
L.
Mihet-Popa
,
M. N.
Mollah
, and
E.
Hossain
,
A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development
.
Energies
,
10
: p.
1217
(
2017
).
5.
J. A.
Sanguesa
,
V.
Torres-Sanz
,
P.
Garrido
, and
F. J.
Martinez
 et al.,
A review on electric vehicles: technologies and challenges
.
Smart Cities
,
4
: p.
372
404
(
2021
).
6.
S. S.
Katoch
and
M.
Eswaramoorthy
,
A detailed review on electric vehicles battery thermal management system
.
IOP Conference Series: Materials Science and Engineering
,
912
: p.
042005
(
2020
).
7.
B.
Dunn
,
H.
Kamath
, and
J. M.
Tarascon
,
Electrical energy storage for the grid: A battery of choices
.
Science
,
334
: p.
928
935
(
2011
).
8.
S. M.
Lukic
,
J.
Cao
,
R. C.
Bansal
, and
F.
Rodriguez
 et al.,
Energy storage systems for automotive applications
.
IEEE Transactions on Industrial Electronics
,
55
: p.
2258
2267
(
2008
).
9.
H.
Budde-Meiwes
,
J.
Drillkens
,
B.
Lunz
 et al.,
A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers
,
Part D: Journal of Automobile Engineering
,
227
: p.
761
776
(
2013
).
10.
J.
Li
and
Z.
Zhu
, “
Battery Thermal Management Systems of Electric Vehicles
,” Master’s thesis,
Chalmer University of Technology
,
2014
.
11.
K. W. E.
Cheng
,
Recent development on electric vehicles
.
2009
3rd International Conference on Power Electronics Systems and Applications, PESA
, p.
1
5
.
12.
King Mongkut’s University of Technology Thonburi
,
Study on Technology and Innovations in Electric Vehicles
,
2017
(in Thai).
13.
D.
Linden
and
T. B.
Reddy
, “Lead-Acid Batteries,” in
Handbook of Batteries
(
McGraw-Hill
,
Penn Plaza, New York
,
2001
).
14.
J. P.
Aditya
,
S.
Member
, and
M.
Ferdowsi
,
Comparison of NiMH and Li-ion batteries in automotive applications
.
2008
IEEE Vehicle Power and Propulsion Conference
, p.
1
6
.
15.
C. W.
Park
,
S.
Kang
,
H. L.
Hermandez
 et al.,
Thermally triggered degradation of transient electronic devices
.
Advanced Materials
,
27
: p.
3783
3788
(
2015
).
16.
G.
Pistoia
, Batter, “Vehicle application: Traction and control systems,” in
Battery Operated Devices and Systems
(
Elsevier
,
Jordan Hill, Oxford OX2 8DP, UK
,
2009
), p.
321
378
.
17.
J.
Kim
,
J.
Oh
, and
H.
Lee
,
Review on battery thermal management system for electric vehicles
.
Applied Thermal Engineering
,
149
: p.
192
212
(
2019
).
18.
A. A.
Pesaran
and
S. D.
Burch
,
Thermal performance of EV and HEV battery modules and packs prepared under FWP HV71
.
Fourteenth International Electric Vehicle Symposium
,
7
: p.
997
(
1997
).
19.
A. A.
Pesaran
,
S.
Burch
, and
M.
Keyser
,
An approach for designing thermal management systems for electric and hybrid vehicle battery packs
.
The Fourth Vehicle Thermal Management Systems Conference and Exhibition
24
27
(
1999
).
20.
Y.
Huo
,
Z.
Rao
,
X.
Liu
, and
J.
Zhao
,
Investigation of power battery thermal management by using mini-channel cold plate
.
Energy Conversion and Management
,
89
: p.
387
395
(
2015
).
21.
A.
Pesaran
,
Battery thermal management in EVs and HEVs: Issues and solutions
.
Advanced Automotive Battery Conference
(
2001
).
22.
R.
Matthe
,
L.
Turner
, and
H.
Mettlach
,
VOLTEC battery system for electric vehicle with extended range
.
SAE International Journal of Engines
,
4
: p.
1944
1962
(
2011
).
23.
K. F.
Sökmen
and
M.
Çavuş
,
Review of batteries thermal problems and thermal management systems
.
Journal of Innovative Science and Engineering
,
1
: p.
35
55
(
2017
).
24.
T. I. C.
Buidin
and
F.
Mariasiu
,
Battery thermal management systems: Current status and design approach of cooling technologies
.
Energies
,
14
: p.
4879
(
2021
).
25.
S. S.
Madani
,
E.
Schaltz
, and
S. K.
Kær
,
Thermal simulation of phase change material for cooling of a Lithium-Ion battery pack
.
Electrochem
,
1
: p.
439
449
(
2020
).
26.
M.
Gökçek
and
F.
Şahin
,
Experimental performance investigation of minichannel water cooled-thermoelectric refrigerator
.
Case Studies in Thermal Engineering
,
10
: p.
54
62
(
2017
).
27.
N.
Ahammed
,
L. G.
Asirvatham
, and
S.
Wongwises
,
Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger
.
Experimental Thermal and Fluid Science
,
74
: p.
81
90
(
2016
).
28.
D.
Zhao
and
G.
Tan
,
A review of thermoelectric cooling: Materials, modeling and applications
.
Applied Thermal Engineering
,
66
: p.
15
24
(
2014
).
29.
T. H.
Tran
,
S.
Harmand
,
B.
Desmet
, and
S.
Filangi
,
Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery
.
Applied Thermal Engineering
,
63
: p.
551
558
(
2014
).
30.
L.
Li
,
F.
Dababneh
, and
J.
Zhao
,
Cost-effective supply chain for electric vehicle battery remanufacturing
.
Applied Energy
,
226
: p.
277
286
(
2018
).
31.
A. A. H.
Akinlabi
and
D.
Solyali
,
Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review
.
Renewable and Sustainable Energy Reviews
,
125
: p.
109815
(
2020
).
32.
W.
Wu
,
S.
Wang
,
W.
Wu
,
K.
Chen
,
S.
Hong
, and
Y.
Lai
,
A critical review of battery thermal performance and liquid based battery thermal management
.
Energy Conversion and Management
,
182
: p.
262
281
(
2019
).
33.
T.
Amietszajew
,
E.
McTurk
,
J.
Fleming
, and
R.
Bhagat
,
Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells
.
Electrochimica Acta
,
263
: p.
346
352
(
2018
).
34.
P. M.
Attia
,
A.
Grover
,
N.
Jin
,
K. A.
Severson
,
T. M.
Markov
 et al.,
Closed-loop optimization of fast-charging protocols for batteries with machine learning
.
Nature
,
578
: p.
397
402
(
2020
).
35.
L.
Cheng
,
A.
Garg
,
A. K.
Jishnu
, and
L.
Gao
,
Surrogate based multi-objective design optimization of lithium-ion battery air-cooled system in electric vehicles
.
Journal of Energy Storage
,
31
: p.
101645
(
2020
).
36.
N.
Yang
,
X.
Zhang
,
G.
Li
, and
D.
Hua
,
Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements
.
Applied Thermal Engineering
,
80
: p.
55
65
(
2015
).
37.
Y. S.
Choi
and
D. M.
Kang
,
Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles
.
Journal of Power Sources
,
270
: p.
273
280
(
2014
).
38.
Energy Policy and Planning Office, Ministry of Energy
, “
Energy Efficiency Plan; EEP 2015
,” p.
1
21
,
2015
.
39.
S.
Sirikasemsuk
,
S.
Wiriyasart
, and
P.
Naphon
,
Review thermal management system of battery for electrical vehicles
.
Srinakharinwirot Engineering Journal
,
16
: p.
93
107
(
2021
).
40.
Thailand Automotive Institute
,
Thailand’s National Metal and Materials Technology Center, and National Science and Technology Development Agency
,
Study and Development of Cooling Systems for Batteries used in Electric Vehicles in Thailand
,
2018
(in Thai).
41.
P.
Suksusron
,
S.
Wiriyasart
, and
P.
Naphon
,
Electrical vehicle battery cooling by thermoelectric cooling module
.
Srinakharinwirot Engineering Journal
,
16
: p.
50
58
(
2021
).
This content is only available via PDF.