In this work, the studies on the development of three-dimensional visualization of the multicrystalline silicon ingot structure based on the digital image processing of photoluminescence of silicon wafers have been carried out. The study of the internal multicrystalline structure and the defect distribution in the course of the ingot crystallization using classical methods requires much time and destruction of the sample along the growth direction. This is unsuitable for the manufacturing process. In this paper, the results of the analysis of the defect distribution in the direction of silicon crystal growth are presented. The 3D model construction is performed using the MATLAB software environment.
REFERENCES
1.
ITRPV 2019 International Technology Roadmap for Photovoltaics Results 2019
, 11th Edition (2020
).2.
A.
Kovvali
, M.
Demant
, T.
Trotschler
, J.
Haunschild
, and S.
Rein
, “About the relevance of defect features in as-cutmulticrystalline silicon wafers on solar cell performance
”, (AIP Conf. Proc.
2018
, Vol. 1999
), pp. 130011
-1
-8.3.
C.W. Lan.,
C.F.
Yang
, A.
Lan
, M.
Yang
, A.
Yu
, H.P.
Hsu
, B.
Hsu
, and C Hsu, “Engineering silicon crystals for photovoltaics
”, (Cryst. Eng. Comm.
2016
, Vol. 18
), pp. 1474
–1485
.4.
C.W.
Lan
, W.C.
Lan
, T.F.
Li
, A.
Yu
, Y.M.
Yang
, C.
Hsu
, B.
Hsu
, and A.
Yang
, “Grain control in directional solidification of photovoltaic silicon
”, (J. Cryst. Growth
, 2013
, Vol. 360
), pp. 68
–75
.5.
G.
Stokkan
, A.
Song
, and B.
Ryningen
, “Investigation of the grain boundary character and dislocation density of different types of high performance multicrystalline silicon
, (Crystals
, 2018
, Vol. 8
), pp. 341
.6.
J.
Schmidt
and A.
Aberle
, “Accurate method for the determination of bulk minority-carrier lifetime of mono and multicrystalline silicon wafers
”, (Journal of Applied Physics
, 1997
, Vol. 81
, No. 9
), pp. 6186
–6199
.7.
M.
Wilson
, A.
Savtchouk
, J.
Lagowski
, K.
Kis-Szabo
, F.
Korsos
, A.
Toth
, R.
Kopecek
, and V.
Mihailetchi
, “QSS-µPCD measurement of lifetime in silicon wafers: advantages and new applications
”, (Energy Procedia
, 2011
, Vol. 8
), pp. 128
–134
.8.
J.
Lich
and M.
Turek
, “Correlation between different carrier-lifetime measurement methods for Si-blocks
”, (Energy Procedia
, 2011
, Vol. 8
), pp. 58
–63
.9.
R.A.
Sinton
, T.
Mankad
, S.
Bowden
, and N.
Enjalbert
, “Evaluating silicon blocks and ingots with quasi-steady- state lifetime measurements
”, (Proceedings of the 19ᵗʰ European Photovoltaic Solar Energy Conference and Exhibition
, 2004
), pp. 1
–4
.10.
M.
Demant
, S.
Rein
, J.
Krisch
, S.
Schoenfelder
, C.
Fischer
, S.
Bartsch
, and R.
Preu
, “Detection and analysis of microcracks in multi-crystalline silicon wafers during solar cell production
”, (37ᵗʰ IEEE Photovoltaic Specialists Conference
, 2011
), pp. 1
–6
.11.
C.
Funke
, E.
Schmid
, G.
Gartner
, S.
Reibenweber
, W.
Futterer
, A.
Poklad
, L.
Raabe
, O.
Patzold
, and M.
Stelter
, “Impurities, inclusions, and dislocations in multicrystalline silicon grown from well-mixed and poorly mixed melts
”, (Journal of Crystal Growth
, 2014
, Vol. 401
), pp. 732
–736
.12.
S.
Herlufsen
, J.
Schmidt
, D.
Hinken
, K.
Bothe
, and R.
Brendel
, “Camera-based photoluminescence lifetime imaging of crystalline silicon wafers
”, (Proceeding of 24ᵗʰ European Photovoltaic Solar Energy Conference
, 2015
), pp. 1
–5
.13.
J.A.
Eikelboom
, C.
Leguijt
, C.F.A.
Frumau
, and A.R.
Burgers
, “Microwave detection of minority carriers in solar cell silicon wafers
”, (Solar Energy Materials and Solar Cells
, 1995
, Vol. 36
), pp. 169
–185
.14.
J.A.
Giesecke
, M.C.
Schubert
, B.
Michl
, F.
Schindler
, and W.
Warta
, “Minority carrier lifetime imaging of silicon wafers calibrated by quasi-steady-state photoluminescence
”, (Solar Energy Materials and Solar Cells
, 2011
, Vol. 95
), pp. 1011
–1018
.15.
J.A.
Giesecke
, M.C.
Schubert
, and W.
Warta
, “Self-sufficient minority carrier lifetime in silicon from quasi- steady-state photoluminescence
”, (Physica Status Solidi A
, 2012
, Vol. 209
, No. 11
), pp. 2286
–2290
.16.
B.
Mitchell
, J.
Greulich
, and T.
Trupke
, “Quantifying the effect of minority carrier diffusion and free carrier absorption on photoluminescence bulk lifetime imaging of silicon bricks
”, (Solar Energy Materials and Solar Cells
, 2012
, Vol. 107
), pp. 75
–80
.17.
S.
Lou
, H.
Zhu
, S.
Hu
, C.
Zhao
, and P.
Han
, “Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods
”, (Scientific Reports
, 2015
, Vol. 5
, No. 14084
), pp. 1
–10
.18.
D.
Baek
, J.
Lee
, and B.
Choi
, “Diffusion length and resistivity distribution characteristics of silicon wafer by photoluminescence
”, (Materials Research Bulletin
, 2014
, Vol. 58
), pp. 157
–163
.19.
T.
Trupke
, R.A.
Bardos
, M.C.
Schubert
, and W.
Warta
, “Photoluminescence imaging of silicon wafers
”, (Applied Physics Letters
, 2006
, Vol. 89
), pp. 044107
-1
-3.20.
T.
Trupke
, B.
Mitchell
, J.W.
Weber
, W.
McMillan
, R.A.
Bardos
, and R.
Kroeze
, “Photoluminescence Imaging for Photovoltaic Applications
”, (Energy Procedia
, 2012
, Vol. 15
), pp. 135
–146
.21.
T.
Fuyuki
, H.
Kondo
, Y.
Kaji
, T.
Yamazaki
, Y.
Takahashi
, and Y.
Uraoka
, “One shot mapping of minority carrier diffusion length in polycrystalline silicon solar cells using electroluminescence
”, (Proceedings of the 31ˢᵗ IEEE Photovoltaic Specialists Conference
, 2005
), pp. 1343
–1345
.22.
D.
Kohler
, D.
Kiliani
, B.
Raabe
, S.
Seren
, and G.
Hahn
, “Characterization of defect clusters in compensated silicon solar cells
”, (Proceedings of the 26ᵗʰ European Photovoltaic Solar Energy Conference and Exhibition
, 2011
), pp. 1021
–1024
.23.
R.
Zeidler
, J.
Haunschild
, B.
Seeber
, S.
Riepe
, H.
Hoffler
, F.
Fertig
, I.
Reis
, and S.
Rein
, “Tomographic defect reconstruction of multicrystalline silicon ingots using photoluminescence images of as-cut wafers and solar cells
”, (Proceedings of the 27ᵗʰ European Photovoltaic Solar Energy Conference and Exhibition
, 2012
), pp. 636
–641
.24.
Y.
Hayama
, T.
Matsumoto
, T.
Muramatsu
, K.
Kutsukake
, H.
Kudo
, and N.
Usami
, “3D visualization and analysis of dislocation clusters in multicrystalline silicon ingot by approach of data science
”, (Solar Energy Materials and Solar Cells
, 2019
, Vol. 189
), pp. 239
–244
.25.
S.M.
Karabanov
, A.E.
Serebryakov
, O.A.
Belyakov
, D.V.
Suvorov
, and A.S.
Karabanov
, “Development of 3D imaging of multicrystalline structure of silicon ingots
”, (Bulletin of Ryazan State Radio Engineering University
, 2019
, No. 68
), pp. 105
–110
.26.
S.M.
Karabanov
, O.A.
Belyakov
, A.S.
Karabanov
, A.E.
Serebryakov
, and D.V.
Suvorov
, “The Development of 3D visualization of ingot structure based on digital processing of photoluminescent wafer images of multicrystalline silicon
”, (Proceedings of 36ᵗʰ European Photovoltaic Solar Energy Conference
), pp. 341
–344
), ISBN: 3-936338-60-4, Paper DOI: .
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)